Page 126 - 《精细化工》2021年第7期
P. 126
·1408· 精细化工 FINE CHEMICALS 第 38 卷
综上分析,在最佳工艺条件下,等离子体预处 KCP2[J]. Biocatalysis and Agricultural Biotechnology, 2020, 26:
理对菌体的蛋白合成及代谢产生了较强的正效应, 101654.
[12] BOGAERTS A, NEYTS E, GIJBELS R, et al. Gas discharge plasmas
尤其在 DNA 修复和氨基酸合成上,一方面提高了菌 and their applications[J]. Spectrochimica Acta, Part B, 2002, 57(4):
体活性,延缓了其衰亡过程;另一方面促进了包括 609-658.
[13] PARK D J, LEE M H, WOO Y I, et al. Sterilization of
α-淀粉酶在内的各种蛋白质在菌体中的生物合成。 microorganisms in silk fabrics by microwave-induced argon plasma
treatment at atmospheric pressure[J]. Surface & Coatings
3 结论 Technology, 2008, 202(22/23): 5773-5778.
[14] BUTSCHER D, SCHLUP T, ROTH C, et al. Inactivation of
采用低真空室温等离子体对解淀粉芽孢杆菌 microorganisms on granular materials: Reduction of Bacillus
amyloliquefaciens endospores on wheat grains in a low pressure
CICC 10035 进行预处理,经工艺优化,在发酵过程 plasma circulating fluidized bed reactor[J]. Journal of Food
中能显著促进菌体生长和 α-淀粉酶的分泌。在放电 Engineering, 2015, 159: 48-56.
功率 120 W、工作气压 135 Pa,预处理时间 15 s 的 [15] BUTSCHER D, VAN LOON H, WASKOW A. Plasma inactivation
of microorganisms on sprout seeds in a dielectric barrier discharge[J].
条件下,发酵 48 h 后,发酵液中 α-淀粉酶酶活最高 International Journal of Food Microbiology, 2016, 238: 222-232.
可达到(404±11) U/mL,与对照样相比提高约 20%。 [16] MANDAL R, SINGH A, SINGH A P. Recent developments in cold
plasma decontamination technology in the food industry[J]. Trends in
此预处理工艺快速、经济、绿色、高效,摒弃了繁 Food Science & Technology, 2018, 80: 93-103.
琐的菌株筛选过程,有利于该项技术的推广,为提 [17] ZHANG C, QIN J, DAI Y, et al. Atmospheric and room temperature
高微生物生产性能和工业化应用带来了新的前景。 plasma (ARTP) mutagenesis enables xylitol over-production with
yeast Candida tropicalis[J]. Journal of Biotechnology, 2019, 296: 7-13.
参考文献: [18] ZHUANG Y, JIANG G L, ZHU M J. Atmospheric and room
temperature plasma mutagenesis and astaxanthin production from
[1] ARIKAN B. Highly thermostable, thermophilic, alkaline, SDS and sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1[J].
chelator resistant amylase from a thermophilic Bacillus sp. isolate Process Biochemistry, 2020, 91: 330-338.
A3-15[J]. Bioresource Technology, 2008, 99(8): 3071-3076. [19] XU H H (徐欢欢), ZHANG H B (张红兵), LI H X (李会宣), et al.
[2] HMIDET N, ALI N E, HADDAR A, et al. Alkaline proteases and Application progress of atmosphericand room temperature plasma
thermostable α-amylase co-produced by Bacillus licheniformis NH1: technology in microbial mutagenesis[J]. Current Biotechnology (生
Characterization and potential application as detergent additive[J]. 物技术进展), 2020, 10(4): 358-362.
Biochemical Engineering Journal, 2009, 47(1/2/3): 71-79. [20] GUO J X (郭佳欣), ZHANG P J (张培基), LIU D Y (刘丁玉), et al.
[3] MSARAH M J, IBRAHIMB I, HAMID A A, et al. Optimisation and Screening of high-yield riboflavin Bacillus subtilis strain by
production of alpha amylase from thermophilic Bacillus spp. and its atmospheric and room temperature plasma[J]. Food and
application in food waste biodegradation[J]. Heliyon, 2020, 6(6): Fermentation Industries (食品与发酵工业), 2020, 46(4): 28-33.
e04183. [21] ROY N C, HASAN M M, TALUKDERM R, et al. Prospective
[4] MAO N R (毛乃仁). Food grade alpha amylase[J]. Fine Chemicals applications of low frequency glow discharge plasmas on enhanced
(精细化工), 1988, 5(4): 12. germination, growth and yield of wheat[J]. Plasma Chemistry and
[5] OJHAA S K, SINGH P K, MISHRA S, et al. Response surface Plasma Processing, 2018, 38(1): 13-28.
methodology based optimization and scale-up production of amylase [22] LI L, JIANG J F, LI J G, et al. Effects of cold plasma treatment on
from a novel bacterial strain, Bacillus aryabhattai KIIT BE-1[J]. seed germination and seedling growth of soybean[J]. Scientific
Biotechnology Reports, 2020, 27: e00506. Reports, 2014, 4(1): 5859-5865.
[6] NIU D D (牛丹丹), JIN X (靳晓), WU H Y (吴海洋), et al. [23] LING L, LI J, SHEN M, et al. Cold plasma treatment enhances
Establishment and characterization of a highly active mutant of sweet oilseed rape seed germination under drought stress[J]. Scientific
amylase from Bacillus amyloliticus[J]. Food and Fermentation Reports, 2015, 5(9): 13033.
Industries (食品与发酵工业), 2017, 43(10): 24-29. [24] ZAHORANOVÁ A, HOPPANOVÁ L, ŠIMONČICOVÁ J, et al.
[7] DUAN X G (段绪果), ZHOU S Y (周素雅), SHEN Z Y (沈镇炎), Effect of cold atmospheric pressure plasma on maize seeds:
et al. Screening, identification and fermentation optimization of a Enhancement of seedlings growth and surface microorganisms
newly isolated raw starch digesting amylase-producing strain inactivation[J]. Plasma Chemistry and Plasma Processing, 2018, 38:
Bacillus sp. GEL-09[J]. Microbiology China (微生物学通报), 2018, 969-988.
45(6): 1180-1189. [25] JIANG J, HE X, LI L, et al. Effect of cold plasma treatment on seed
[8] ZHAO X, ZHENG H, ZHEN J, et al. Multiplex genetic engineering germination and growth of wheat[J]. Plasma Science and
improves endogenous expression of mesophilic α-amylase gene in a Technology, 2014, 16(1): 54-58.
wild strain Bacillus amyloliquefaciens 205[J]. International Journal [26] DONG Y (董艳), ZHANG Z H (张正海), WANG N (王宁), et al.
of Biological Macromolecules, 2020, 165(Part A): 609-618. Label-free differential proteomics analysis of hemp seeds at different
[9] ZHANG K, DUAN X, WU J. Multigene disruption in germination stages[J]. Food Science( 食品科 学 ), 2020, 41(14):
undomesticated Bacillus subtilis ATCC 6051a using the 190-194.
CRISPR/Cas9 system[J]. Scientific Reports, 2016, 6: 27943. [27] DOHERTY A J, JACKSON S P, WELLER G R. Identification of
[10] PRANAY K, PADMADEO S R, PRASAD B. Production of amylase bacterial homologues of the Ku DNA repair proteins[J]. Febs Letters,
from Bacillus subtilis sp. strain KR1 under solid state fermentation 2001, 500(3): 186-188.
on different agrowastes[J]. Biocatalysis and Agricultural Biotechnology, [28] BOULTON S J, JACKSON S P. Components of the Ku-dependent
2019, 21: 101300. non-homologous end-joining pathway are involved in telomeric
[11] BHATT B, PRAJAPATI V, PATEL K, et al. Kitchen waste for length maintenance and telomeric silencing[J]. Embo Journal, 1998,
economical amylase production using Bacillus amyloliquefaciens 17(6): 1819-1828.