Page 140 - 《精细化工》2021年第8期
P. 140
·1634· 精细化工 FINE CHEMICALS 第 38 卷
3+
–
当可见光照射时,激发的 e 从价带转移到导带, [9] CHEN Y, WU Q, LIU L, et al. The fabrication of self-floating Ti /N
+
使价带上留下具有高氧化活性的 h 。其中,一部分 co-doped TiO 2/diatomite granule catalyst with enhanced photocatalytic
performance under visible light irradiation[J]. Applied Surface Science,
+
+
h 直接与罗丹明 B 反应;一部分 h 被体系中水分子或 2019, 467: 514-525.
–
OH 捕获生成强氧化性的•OH,这是降解罗丹明 B 的 [10] HUANG H, SONG Y, LI N, et al. One-step in-situ preparation of N-
doped TiO 2@C derived from Ti 3C 2 mxene for enhanced visible-light
主要活性物质之一。上述两种活性组分共同作用,使 driven photodegradation[J]. Applied Catalysis B-Environmental, 2019,
质量分数 95.02%的罗丹明 B 直接矿化成 CO 2 和 H 2O。 251: 154-161.
[11] TIAN J, ZHAO Z H, KUMAR A, et al. Recent progress in design,
3 结论 synthesis, and applications of one-dimensional TiO 2 nanostructured
surface heterostructures: A review[J]. Chemical Society Reviews,
2014, 43: 6920-6937.
通过溶剂热法成功地制备出光催化复合材料 [12] LIU Y, YAN X D, XU B Q, et al. Self-reconstructed formation of a
0
Bi /Bi 2 O 2 CO 3 /N-TiO 2 。通过系列表征证实,直径为 one-dimensional hierarchical porous nanostructure assembled by
0
1.2~2.1 nm 的 Bi 和 Bi 2 O 2 CO 3 的复合量子点均匀生 ultrathin TiO 2 nanobelts for fast and stable lithium storage[J]. ACS
Applied Materials & Interfaces, 2018, 10(22): 19047-19058.
0
长在双晶相 TiO 2 纳米带表面。Bi /Bi 2 O 2 CO 3 /N-TiO 2 [13] ZHAO Z H, TIAN J, SANG Y H, et al. Structure, synthesis, and
2
具有比 TiO 2 更大的比表面积(110.66 m /g),其对 applications of TiO 2 nanobelts[J]. Advanced Materials, 2015, 27:
罗丹明 B 的降解表现出优异的光催化性能,在 3 h 2557-2582.
[14] HOFMANN P. The surfaces of bismuth: Structural and electronic
内达到降解率 95.02%。出色的光催化性能归因于三 properties[J]. Progress in Surface Science, 2006, 81: 191-245.
组分的成功结合及 TiO 2 中氮的成功掺杂,这使材料 [15] ZHAO Z Y, ZHOU Y, WANG F, et al. Polyaniline-decorated {001}
facets of Bi 2O 2CO 3 nanosheets: In situ oxygen vacancy formation
对于可见光的吸收增强,光生电子和空穴的传输速
and enhanced visible light photocatalytic activity[J]. ACS Applied
0
率更快,减少了两者的复合。Bi /Bi 2 O 2 CO 3 /N-TiO 2 Materials & Interfaces, 2015, 7: 730-737.
在可见光照射下降解罗丹明 B 的寿命实验中,表现 [16] CHEN L, HUANG R, YIN S F, et al. Flower-like Bi 2O 2CO 3: Facile
synthesis and their photocatalytic application in treatment of dye-
出良好的稳定性。本文为提高可见光照射下 TiO 2 的 containing wastewater[J]. Chemical Engineering Journal, 2012, 193:
光催化活性提供了一种新思路。 123-130.
[17] DAGERR A, BALIYAN A, KUROSU S, et al. Ultrafast synthesis of
参考文献: carbon quantum dots from fenugreek seeds using microwave plasma
enhanced decomposition: Application of C-QDs to grow fluorescent
[1] SONG Z Y (宋昭仪), XU W C (胥维昌), MA W J (马文静), et al. protein crystals[J]. Scientific Reports, 2020, 10(1): 12333.
Treatment technology and progress of azo-dye wastewater[J]. Dyestuffs [18] GUZMAN D, ISAACS M, TSUKUDA T, et al. CdTe quantum dots
and Coloration (染料与染色), 2018, 55(6): 50-54. modified electrodes ITO-(Polycation/QDs) for carbon dioxide reduction
[2] TAO Q, WANG B W, YAN X L, et al. Hybrids of TiO 2 nanobelts to methanol[J]. Applied Surface Science, 2020, 509: 145386.
modified by graphene: Preparation, characterization, and photocatalytic [19] LI H D, WANG Y N, CHEN G H, et al. Few-layered MoS 2 nanosheets
performance[J]. Applied Surface Science, 2019, 490: 546-555. wrapped ultrafine TiO 2 nanobelts with enhanced photocatalytic
[3] GENG J Y, SI L, GUO H T, et al. Correction: 3D nitrogen-doped property[J]. Nanoscale, 2016, 8: 6101-6109.
graphene gels as robust and sustainable adsorbents for dyes[J]. New [20] KHO Y K, IWASE A, TEOH W Y, et al. Photocatalytic H 2 evolution
Journal of Chemistry, 2017, 41(24): 15447-15457. over TiO 2 nanoparticles. The synergistic effect of anatase and rutile[J].
[4] HU J J (胡俊俊), DING T Y (丁同悦), CHEN Y H (陈弈桦), et al. Journal of Physical Chemistry C, 2010, 114: 2821-2829.
Preparation and photocatalytic application of g-C 3N 4/Ag 3PO 4 [21] TIAN J, LENG Y H, ZHAO Z H, et al. Carbon quantum dots/
composites[J]. Fine Chemicals (精细化工), 2021, 38(3): 483-488. hydrogenated TiO 2 nanobelt heterostructures and their broad spectrum
[5] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a photocatalytic properties under UV, visible, and near-infrared
semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. irradiation[J]. Nano Energy, 2015, 11: 419-427.
[6] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO 2 single crystals [22] ZHANG C, ZHOU Y M, BAO J H, et al. Hierarchical honeycomb
with a large percentage of reactive facets[J]. Nature, 2008, 453(7195): Br-, N-codoped TiO 2 with enhanced visible-light photocatalytic H 2
638-641. production[J]. ACS Applied Materials & Interfaces, 2018, 10:
[7] GAN L N, LI K Z, NIU H J Y, et al. Simultaneous removal of NO x 18796-18804.
and chlorobenzene on V 2O 5/TiO 2 granular catalyst: Kinetic study and [23] YU H J, ZHAO Y F, ZHOU C, et al. Carbon quantum dots/TiO 2
performance prediction[J]. Frontiers of Environmental Science & composites for efficient photocatalytic hydrogen evolution[J]. Journal
Engineering, 2021, 15(4): 1-10. of Materials Chemistry A, 2014, 2: 3344-3351.
[8] KALPANA K, SELVARA J V. Thiourea assisted hydrothermal synthesis [24] LIU H J (刘华俊), PENG T Y (彭天右), PENG Z H (彭正合), et al.
of ZnS/CdS/Ag 2S nanocatalysts for photocatalytic degradation of congo Photocatalytic degradation mechanism of RB over Dy-doped WO 3
red under direct sunlight illumination[J]. RSC Advances, 2016, 6(5): photocatalysts[J]. Journal of Wuhan University: Natural Science
4227-4236. Edition (武汉大学学报: 理学版), 2007, 53(2): 127-132.