Page 26 - 《精细化工》2021年第8期
P. 26

·1520·                            精细化工   FINE CHEMICALS                                 第 38 卷

            题。类水滑石具有碱性强、稳定性好等特点,但吸                                 environment, 2019, 657: 56-72.
            附量相对较低;金属氧化物及其盐吸附剂具有高选                             [13]  OCHEDI F O,  LIU Y, ADEWUYI  Y  G. State-of-the-art review on
                                                                   capture of CO 2 using adsorbents prepared from waste  materials[J].
            择性、高稳定性等优点,未来工业前景非常广阔。                                 Process Safety and Environmental Protection, 2020, 139: 1-25.
            将胺基负载到固体材料中合成新型吸附剂能很好地                             [14]  XU X  G, MYERS M B, VERSTEEG F G,  et al. Next generation
            解决高能耗和高腐蚀等问题,提高 CO 2 的吸附能力,                            amino acid technology for CO 2 capture[J]. Journal  of  Materials
                                                                   Chemistry A, 2021, 9 (3): 1692-1704.
            但合成步骤繁琐,还不能广泛应用在工业生产中。                             [15]  HOSPITAL-BENITO D, LEMUS J, MOYA C, et al. Process analysis
                 在众多吸附剂中,高温吸附剂具有重要的研究                              overview of ionic  liquids on CO 2 chemical  capture[J]. Chemical
            意义。氧化钙基吸附剂由于其价格低廉、材料来源                                 Engineering Journal, 2020, 390: 124509.
                                                               [16]  RAMAZANI R, SAMSAMI A, JAHANMIRI  A,  et al.
            丰富、制备工艺简单和理论吸附容量较高等优点受                                 Characterization of monoethanolamine+potassium lysinate blend
            到广泛关注;但是由于晶型结构以及吸附过程中团                                 solution as a new chemical absorbent  for CO 2  capture[J].
            聚现象的影响,导致其吸附容量以及循环稳定性受                                 International Journal of Greenhouse Gas Control, 2016, 51: 29-35.
                                                               [17]  CHEW T L, AHMAD A L, BHATIA S. Ordered mesoporous silica
            到限制。通过合理构筑制备抗聚集、有效比表面积
                                                                   (OMS) as an adsorbent and membrane for separation  of carbon
            高的三维多孔吸附剂是有效的解决方法。在未来的                                 dioxide (CO 2) [J]. Advances in Colloid and Interface Science, 2010,
            研究方向中,寻找绿色、低成本、高效稳定,且能                                 153(1/2): 43-57.
                                                               [18]  OOI Z L, TAN P Y, TAN L S, et al. Amine-based solvent for CO 2
            大规模应用于工业生产的吸附剂对如期实现碳达峰
                                                                   absorption and its  impact on carbon steel corrosion: A perspective
            和碳中和的战略目标尤为重要。                                         review[J]. Chinese  Journal of Chemical Engineering, 2020, 28(5):
                                                                   1357-1367.
            参考文献:                                              [19]  GHADIRIAN E,  ABBASIAN J, ARASTOOPOUR H. Three-
                                                                   dimensional CFD simulation of an MgO-based sorbent regeneration
            [1]   SINGH S P,  HAO P J, LIU X,  et al. Large-scale  affordable CO 2
                                                                   reactor in a  carbon capture process[J]. Powder  Technology, 2017,
                 capture is possible by 2030[J]. Joule, 2019, 3(9): 2154-2164.
                                                                   318: 314-320.
            [2]   ZHAO Y (赵远), HE J X (贺建雄), JIANG H (姜宏),  et al.
                                                               [20]  ABD A A, NAJI S Z, HASHIM A S, et al. Carbon dioxide removal
                 Preparation of amorphous organozirconium polymer and its
                                                                   through physical adsorption using carbonaceous and non-
                 photocatalytic synthesis of methanol from CO 2[J]. Fine Chemicals
                                                                   carbonaceous adsorbents: A review[J]. Journal  of Environmental
                 (精细化工), 2020, 37(6): 1163-1170.
                                                                   Chemical Engineering, 2020, 8 (5): 104142.
            [3]   LIU K, ZHAO B  S,  WU Y,  et al.  Bubbling synthesis and high-
                                                               [21]  GONZÁLEZ B, MANYÀJ  J.  Activated olive mill waste-based
                 temperature CO 2 adsorption performance of CaO-based adsorbents
                                                                   hydrochars as selective adsorbents for CO 2 capture under
                 from carbide slag[J]. Fuel, 2020, 269: 117481.
                                                                   postcombustion conditions[J]. Chemical Engineering and Processing-
            [4]   ZHANG H Y, HU J D, XIE J, et al. A solid-state chemical method for
                                                                   Process Intensification, 2020, 149: 107830.
                 synthesizing MgO nanoparticles with superior adsorption
                                                               [22]  DILOKEKUNAKUL W, TEERACHAWANWONG P, KLOMKLIANG
                 properties[J]. RSC Advances, 2019, 9(4): 2011-2017.
                                                                   N, et al. Effects of nitrogen and oxygen functional groups and pore
            [5]   ZHU X C, CHEN C P, WANG Q, et al. Roles for K 2CO 3 doping on
                                                                   width of activated  carbon on carbon dioxide capture:  Temperature
                 elevated temperature CO 2 adsorption of potassium promoted layered
                                                                   dependence[J]. Chemical Engineering Journal, 2020, 389: 124413.
                 double oxides[J]. Chemical Engineering Journal, 2019, 366: 181-191.
                                                               [23]  KAUR B, SINGH J, GUPTA R K, et al. Porous carbons derived from
            [6]   RABIE A M, SHABAN  M,  ABUKHADRA M R, et al. Diatomite
                                                                   polyethylene terephthalate (PET) waste for CO 2 capture studies[J].
                 supported by CaO/MgO nanocomposite as heterogeneous catalyst for
                                                                   Journal of Environmental Management, 2019, 242: 68-80.
                 biodiesel production from waste cooking oil[J]. Journal of Molecular
                                                               [24]  MORALI  U,  DEMIRAL H, SENSOZ S. Synthesis of carbon
                 Liquids, 2019, 279: 224-231.
                                                                   molecular sieve for carbon  dioxide adsorption: Chemical vapor
            [7]   AL-MAMOORI A, LAWSON S, ROWNAGHI A A, et al. Improving   deposition combined with Taguchi design of experiment method[J].
                 adsorptive performance of CaO for high-temperature CO 2  capture
                                                                   Powder Technology, 2019, 355: 716-726.
                 through Fe and Ga doping[J]. Energy & Fuels, 2019, 33(2): 1404- 1413.     [25]  HAO J, WANG X, WANG  Y X,  et al.  Hierarchical structure N,
            [8]   GABROVSKA M, TABAKOVA T, IVANOV I, et al. Water–gas shift   O-co-doped porous carbon/carbon nanotube composite derived from
                 reaction over gold deposited on NiAl layered double hydroxides[J].   coal for supercapacitors and CO 2 capture[J]. Nanoscale  Advances,
                 Reaction Kinetics, Mechanisms  and Catalysis, 2019, 127(1):   2020, 2(2): 878-887.
                 187-203.                                      [26]  MENG L Y, PARK S J. Effect of exfoliation temperature on carbon
            [9]   XIE W K (谢汶珂), CHEN J (陈洁). Research progress on the   dioxide capture of graphene nanoplates[J]. Journal of Colloid and
                 application of metal-organic frameworks for photocatalytic reduction   interface science, 2012, 386(1): 285-290.
                 of CO 2 [J]. Fine Chemicals (精细化工), 2020, 37(12): 2386-2397.     [27]  SONG Z N, DONG Q B, XU W L, et al. Molecular layer deposition-
            [10]  LUO X F (罗晓菲), ZHI Y F (支云飞), SHAN Z Y (陕绍云), et al.   modified 5A zeolite for highly efficient CO 2 capture[J]. ACS Applied
                 Research progress of porous materials in the cycloaddition of CO 2   Materials & Interfaces, 2018, 10(1): 769-775.
                 and epoxides[J]. Fine Chemicals ( 精细化 工 ), 2020, 37(12):   [28]  XU X L, ZHAO  X X, SUN  L B,  et al.  Adsorption separation of
                 2415-2425.                                        carbon dioxide, methane and nitrogen on monoethanol amine
            [11]  WANG J Y, HUANG L, YANG R Y, et al. Recent advances in solid   modified β-zeolite[J]. Journal of Natural Gas Chemistry, 2009, 18(2):
                 sorbents for CO 2 capture and new development trends[J]. Energy &   167-172.
                 Environmental Science, 2014, 7(11): 3478-3518.     [29]  XU M, CHEN S J, SEO D K, et al. Evaluation and optimization of
            [12]  WILBERFORCE T, BAROUTAJI A, SOUDAN B, et al. Outlook of   VPSA processes with nanostructured zeolite NaX for post-combustion
                 carbon capture technology and challenges[J]. Science of the total   CO 2 capture[J]. Chemical Engineering Journal, 2019, 371: 693-705.
   21   22   23   24   25   26   27   28   29   30   31