Page 26 - 《精细化工》2021年第8期
P. 26
·1520· 精细化工 FINE CHEMICALS 第 38 卷
题。类水滑石具有碱性强、稳定性好等特点,但吸 environment, 2019, 657: 56-72.
附量相对较低;金属氧化物及其盐吸附剂具有高选 [13] OCHEDI F O, LIU Y, ADEWUYI Y G. State-of-the-art review on
capture of CO 2 using adsorbents prepared from waste materials[J].
择性、高稳定性等优点,未来工业前景非常广阔。 Process Safety and Environmental Protection, 2020, 139: 1-25.
将胺基负载到固体材料中合成新型吸附剂能很好地 [14] XU X G, MYERS M B, VERSTEEG F G, et al. Next generation
解决高能耗和高腐蚀等问题,提高 CO 2 的吸附能力, amino acid technology for CO 2 capture[J]. Journal of Materials
Chemistry A, 2021, 9 (3): 1692-1704.
但合成步骤繁琐,还不能广泛应用在工业生产中。 [15] HOSPITAL-BENITO D, LEMUS J, MOYA C, et al. Process analysis
在众多吸附剂中,高温吸附剂具有重要的研究 overview of ionic liquids on CO 2 chemical capture[J]. Chemical
意义。氧化钙基吸附剂由于其价格低廉、材料来源 Engineering Journal, 2020, 390: 124509.
[16] RAMAZANI R, SAMSAMI A, JAHANMIRI A, et al.
丰富、制备工艺简单和理论吸附容量较高等优点受 Characterization of monoethanolamine+potassium lysinate blend
到广泛关注;但是由于晶型结构以及吸附过程中团 solution as a new chemical absorbent for CO 2 capture[J].
聚现象的影响,导致其吸附容量以及循环稳定性受 International Journal of Greenhouse Gas Control, 2016, 51: 29-35.
[17] CHEW T L, AHMAD A L, BHATIA S. Ordered mesoporous silica
到限制。通过合理构筑制备抗聚集、有效比表面积
(OMS) as an adsorbent and membrane for separation of carbon
高的三维多孔吸附剂是有效的解决方法。在未来的 dioxide (CO 2) [J]. Advances in Colloid and Interface Science, 2010,
研究方向中,寻找绿色、低成本、高效稳定,且能 153(1/2): 43-57.
[18] OOI Z L, TAN P Y, TAN L S, et al. Amine-based solvent for CO 2
大规模应用于工业生产的吸附剂对如期实现碳达峰
absorption and its impact on carbon steel corrosion: A perspective
和碳中和的战略目标尤为重要。 review[J]. Chinese Journal of Chemical Engineering, 2020, 28(5):
1357-1367.
参考文献: [19] GHADIRIAN E, ABBASIAN J, ARASTOOPOUR H. Three-
dimensional CFD simulation of an MgO-based sorbent regeneration
[1] SINGH S P, HAO P J, LIU X, et al. Large-scale affordable CO 2
reactor in a carbon capture process[J]. Powder Technology, 2017,
capture is possible by 2030[J]. Joule, 2019, 3(9): 2154-2164.
318: 314-320.
[2] ZHAO Y (赵远), HE J X (贺建雄), JIANG H (姜宏), et al.
[20] ABD A A, NAJI S Z, HASHIM A S, et al. Carbon dioxide removal
Preparation of amorphous organozirconium polymer and its
through physical adsorption using carbonaceous and non-
photocatalytic synthesis of methanol from CO 2[J]. Fine Chemicals
carbonaceous adsorbents: A review[J]. Journal of Environmental
(精细化工), 2020, 37(6): 1163-1170.
Chemical Engineering, 2020, 8 (5): 104142.
[3] LIU K, ZHAO B S, WU Y, et al. Bubbling synthesis and high-
[21] GONZÁLEZ B, MANYÀJ J. Activated olive mill waste-based
temperature CO 2 adsorption performance of CaO-based adsorbents
hydrochars as selective adsorbents for CO 2 capture under
from carbide slag[J]. Fuel, 2020, 269: 117481.
postcombustion conditions[J]. Chemical Engineering and Processing-
[4] ZHANG H Y, HU J D, XIE J, et al. A solid-state chemical method for
Process Intensification, 2020, 149: 107830.
synthesizing MgO nanoparticles with superior adsorption
[22] DILOKEKUNAKUL W, TEERACHAWANWONG P, KLOMKLIANG
properties[J]. RSC Advances, 2019, 9(4): 2011-2017.
N, et al. Effects of nitrogen and oxygen functional groups and pore
[5] ZHU X C, CHEN C P, WANG Q, et al. Roles for K 2CO 3 doping on
width of activated carbon on carbon dioxide capture: Temperature
elevated temperature CO 2 adsorption of potassium promoted layered
dependence[J]. Chemical Engineering Journal, 2020, 389: 124413.
double oxides[J]. Chemical Engineering Journal, 2019, 366: 181-191.
[23] KAUR B, SINGH J, GUPTA R K, et al. Porous carbons derived from
[6] RABIE A M, SHABAN M, ABUKHADRA M R, et al. Diatomite
polyethylene terephthalate (PET) waste for CO 2 capture studies[J].
supported by CaO/MgO nanocomposite as heterogeneous catalyst for
Journal of Environmental Management, 2019, 242: 68-80.
biodiesel production from waste cooking oil[J]. Journal of Molecular
[24] MORALI U, DEMIRAL H, SENSOZ S. Synthesis of carbon
Liquids, 2019, 279: 224-231.
molecular sieve for carbon dioxide adsorption: Chemical vapor
[7] AL-MAMOORI A, LAWSON S, ROWNAGHI A A, et al. Improving deposition combined with Taguchi design of experiment method[J].
adsorptive performance of CaO for high-temperature CO 2 capture
Powder Technology, 2019, 355: 716-726.
through Fe and Ga doping[J]. Energy & Fuels, 2019, 33(2): 1404- 1413. [25] HAO J, WANG X, WANG Y X, et al. Hierarchical structure N,
[8] GABROVSKA M, TABAKOVA T, IVANOV I, et al. Water–gas shift O-co-doped porous carbon/carbon nanotube composite derived from
reaction over gold deposited on NiAl layered double hydroxides[J]. coal for supercapacitors and CO 2 capture[J]. Nanoscale Advances,
Reaction Kinetics, Mechanisms and Catalysis, 2019, 127(1): 2020, 2(2): 878-887.
187-203. [26] MENG L Y, PARK S J. Effect of exfoliation temperature on carbon
[9] XIE W K (谢汶珂), CHEN J (陈洁). Research progress on the dioxide capture of graphene nanoplates[J]. Journal of Colloid and
application of metal-organic frameworks for photocatalytic reduction interface science, 2012, 386(1): 285-290.
of CO 2 [J]. Fine Chemicals (精细化工), 2020, 37(12): 2386-2397. [27] SONG Z N, DONG Q B, XU W L, et al. Molecular layer deposition-
[10] LUO X F (罗晓菲), ZHI Y F (支云飞), SHAN Z Y (陕绍云), et al. modified 5A zeolite for highly efficient CO 2 capture[J]. ACS Applied
Research progress of porous materials in the cycloaddition of CO 2 Materials & Interfaces, 2018, 10(1): 769-775.
and epoxides[J]. Fine Chemicals ( 精细化 工 ), 2020, 37(12): [28] XU X L, ZHAO X X, SUN L B, et al. Adsorption separation of
2415-2425. carbon dioxide, methane and nitrogen on monoethanol amine
[11] WANG J Y, HUANG L, YANG R Y, et al. Recent advances in solid modified β-zeolite[J]. Journal of Natural Gas Chemistry, 2009, 18(2):
sorbents for CO 2 capture and new development trends[J]. Energy & 167-172.
Environmental Science, 2014, 7(11): 3478-3518. [29] XU M, CHEN S J, SEO D K, et al. Evaluation and optimization of
[12] WILBERFORCE T, BAROUTAJI A, SOUDAN B, et al. Outlook of VPSA processes with nanostructured zeolite NaX for post-combustion
carbon capture technology and challenges[J]. Science of the total CO 2 capture[J]. Chemical Engineering Journal, 2019, 371: 693-705.