Page 27 - 《精细化工》2021年第8期
P. 27
第 8 期 徐永辉,等: 二氧化碳捕集材料的研究进展 ·1521·
[30] KIM M Z, SHARMA P, KIM Y, et al. One-step template-free [44] WILLIAMS G R, HARE D O. Towards understanding control and
hydrothermal synthesis of partially Sr-incorporated hierarchical application of layered double hydroxide chemistry[J]. Journal of
K-CHA zeolite microspheres[J]. Microporous and Mesoporous Materials Chemistry, 2006, 16(30): 3065-3074.
Materials, 2019, 286: 65-76. [45] GOUVEIA L G T, AGUSTINI C B, PEREZ-LOPEZ O W, et al. CO 2
[31] ZUKAL A, MAYEROVÁJ, KUBŮ M. Adsorption of carbon dioxide adsorption using solids with different surface and acid-base
on high-silica zeolites with different framework topology[J]. Topics properties[J]. Journal of Environmental Chemical Engineering, 2020,
in Catalysis, 2010, 53(19/20): 1361-1366. 8(4): 103823.
[32] SUN M Z, GU Q F, HANIF A, et al. Transition metal cation- [46] REIJERS H T J, VALSTER-SCHIERMEIER S E A, COBDEN P D
exchanged SSZ-13 zeolites for CO 2 capture and separation from et al. Hydrotalcite as CO 2 sorbent for sorption-enhanced steam
N 2[J]. Chemical Engineering Journal, 2019, 370: 1450-1458. reforming of methane[J]. Industrial & Engineering Chemistry
[33] LI G, XIAO P, WEBLEY P, et al. Capture of CO 2 from high humidity Research, 2006, 45(8): 2522-2530.
flue gas by vacuum swing adsorption with zeolite13X[J]. Adsorption, [47] FENG Y Y, NIU X D, XU Y H, et al. Adsorption of CO 2 on MgAl
2008, 14 (2/3): 415-422. layered double hydroxides: Effect of intercalated anion and alkaline
[34] EDDAOUDI M, MOLER D B, LI H, et al. Modular chemistry: etching time[J]. Chinese Physics B, 2021, 30(4): 048101.
Secondary building units as a basis for the design of highly porous [48] ZHU X C, WANG Q, SHI Y X, et al. Layered double oxide/activated
and robust metal-organic carboxylate frameworks[J]. Accounts of carbon-based composite adsorbent for elevated temperature H 2/CO 2
Chemical Research, 2001, 34(4): 319-330. separation[J]. International Journal of Hydrogen Energy, 2015,
[35] YOUNAS M, REZAKAZEMI M, DAUD M, et al. Recent progress 40(30): 9244-9253.
and remaining challenges in post-combustion CO 2 capture using [49] SHANG S S, HANIF A, SUN M Z, et al. Novel M (Mg/Ni/Cu)-
metal-organic frameworks (MOFs)[J]. Progress in Energy and Al-CO 3 layered double hydroxides synthesized by aqueous miscible
Combustion Science, 2020, 80: 100849. organic solvent treatment (AMOST) method for CO 2 capture[J].
[36] SINGH G, LEE J, KARAKOTI A, et al. Emerging trends in porous Journal of Hazardous Materials, 2019, 373: 285-293.
materials for CO 2 capture and conversion[J]. Chemical Society [50] MANOHARA G V. Exfoliation of layered double hydroxides
Reviews, 2020, 49 (13): 4360-4404. (LDHs): A new route to mineralize atmospheric CO 2[J]. RSC
[37] KONG Z N, NIU Z D, HE L, et al. In situ analysis of the adsorption Advances, 2014, 4(86): 46126-46132
behaviors of CO 2 on the surface of MIL-91(Al)[J]. New Journal of [51] ZHU X C, CHEN C P, WANG Q, et al. Roles for K 2CO 3 doping on
Chemistry, 2018, 42(20): 16985-16991. elevated temperature CO 2 adsorption of potassium promoted layered
[38] KANG J H, YOON T, KIM S, et al. Extraordinarily selective double oxides[J]. Chemical Engineering Journal, 2019, 366: 181-191.
adsorption of CO 2 over N 2 in a polyethyleneimine-impregnated [52] NIU X D, FENG Y Y, XU Y H, et al. Synthesis of hollow Al-doped
NU-1000 material[J]. Microporous and Mesoporous Materials, 2019, MgO spheres via a sacrificial templating method for enhanced CO 2
281: 84-91. adsorption[J]. Journal of Natural Gas Science and Engineering, 2021,
[39] VO T K, BAE Y, CHANG B, et al. Highly CO selective 88: 103814.
Cu(Ⅰ)-doped MIL-100(Fe) adsorbent with high CO/CO 2 selectivity [53] HUANG C H, CHANG K P, YU C T, et al. Development of
due to π complexation: Effects of Cu(Ⅰ) loading and activation high-temperature CO 2 sorbents made of CaO-based mesoporous
temperature[J]. Microporous and Mesoporous Materials, 2019, 274: silica[J]. Chemical Engineering Journal, 2010, 161(1/2): 129-135.
17-24. [54] YANG Y D, LIU W Q, HU Y C, et al. Novel low cost Li 4SiO 4-based
[40] HANIF A, SUN M Z, SHANG S S, et al. Exfoliated Ni-Al LDH 2D sorbent with naturally occurring wollastonite as Si-source for cyclic
nanosheets for intermediate temperature CO 2 capture[J]. Journal of CO 2 capture[J]. Chemical Engineering Journal, 2019, 374: 328-337.
Hazardous Materials, 2019, 374: 365-371. [55] LASHAKI M J, KHIAVI S, SAYARI A. Stability of amine-
[41] DEWANGAN N, HUI W M, JAYAPRAKASH S, et al. Recent functionalized CO 2 adsorbents: A multifaceted puzzle[J]. Chemical
progress on layered double hydroxide (LDH) derived metal-based Society Reviews, 2019, 48(12): 3320-3405.
catalysts for CO 2 conversion to valuable chemical[J]. Catalysis [56] MADDEN D, CURTIN T. Carbon dioxide capture with amino-
Today, 2020, 356: 490-513. functionalised zeolite-β: A temperature programmed desorption study
[42] YANG Z Z, WEI J J, ZENG G M, et al. A review on strategies to under dry and humid conditions[J]. Microporous and Mesoporous
LDH-based materials to improve adsorption capacity and Materials, 2016, 228: 310-317.
photoreduction efficiency for CO 2[J]. Coordination Chemistry [57] HE H, TANG H Y, CHEN X J, et al. Structure design of low-
Reviews, 2019, 386: 154-182. temperature regenerative hyperbranched polyamine adsorbent for
[43] MANOHARA G, MAROTO-VALER M M, GARCIA S. Binder free CO 2 capture[J]. Langmuir, 2018, 34(47): 14169-14179.
novel synthesis of structured hybrid mixed metal oxides (MMOs) for [58] HE H, ZHUANG L Z, CHEN S X, et al. Structure design of a
high temperature CO 2 capture[J]. Chemical Engineering Journal, hyperbranched polyamine adsorbent for CO 2 adsorption[J]. Green
2021, 415: 128881. Chemistry, 2016, 18(21): 5859-5869.