Page 133 - 《精细化工》2021年第9期
P. 133

第 9 期                      汪鸣凤,等: Bi 2 S 3 /CNFs 复合材料制备及其光催化性能                          ·1847·


                 Chemistry & Engineering, 2018, 6 (10): 12776-12786.     2019, 375: 658-667.
            [8]   BAHAREH K, HABIBI M H. High photocatalytic activity of   [23]  TIAN C H, LUO  S, SHE J R,  et al.  Cellulose nanofibrils  enable
                 light-driven Fe 2TiO 5 nanoheterostructure toward degradation of   flower-like BiOCl for high-performance photocatalysis  under
                 antibiotic metronidazole[J]. Journal  of Industrial and Engineering   visible-light irradiation[J]. Applied  Surface Science, 2019, 464:
                 Chemistry, 2019, 80: 292-300.                     606-615.
            [9]   WU Z Z, YUAN X Z, WANG H, et al. Facile synthesis of a novel   [24]  MA Y, LV P, DUAN F,  et al. Direct Z-scheme Bi 2S 3/BiFeO 3
                 full-spectrum-responsive Co 2. 67S 4 nanoparticles for UV-, Vis- and   heterojunction  nanofibers with enhanced photocatalytic activity[J].
                 NIR-driven photocatalysis[J]. Applied Catalysis B: Environmental,   Journal of Alloys and Compounds, 2020, 834: 1138-1147.
                 2017, 202: 104-111.                           [25]  YANG S, SHAO  C L, LI X H,  et al. Molybdenum diselenide
            [10]  ALAMELU K, RAJA  V, SHIAMALA  L,  et al. Biphasic  TiO 2   nanosheet/carbon nanofiber heterojunctions: Controllable fabrication
                 nanoparticles decorated graphene nanosheets for visible light driven   and enhanced photocatalytic properties with a broad-spectrum
                 photocatalytic degradation of organic dyes[J]. Applied Surface   response from visible to infrared  light[J]. J Colloid  Interface Sci,
                 Science, 2018, 430: 145-154.                      2018, 518: 1-10.
            [11]  LI H, DENG F, ZHENG  Y,  et al. Visible-light-driven  Z-scheme   [26]  ALAMELU K, RAJA  V, SHIAMALA  L,  et al. Biphasic  TiO 2
                 rGO/Bi 2S 3-BiOBr heterojunctions with tunable exposed BiOBr (102)   nanoparticles decorated graphene nanosheets for visible light driven
                 facets for efficient synchronous photocatalytic degradation of   photocatalytic degradation of organic dyes[J]. Applied Surface
                 2-nitrophenol and Cr(Ⅵ) reduction[J]. Environmental Science: Nano,   Science, 2018, 430: 145-154.
                 2019, 6 (12): 3670-3683.                      [27]  ZENG X, HUANG L Q, WANG C N, et al. Sonocrystallization of
            [12]  HELAL A, HARRAZ F A, ISMAIL A A,  et al. Hydrothermal   ZIF-8  on electrostatic spinning TiO 2  nanofibers surface  with
                 synthesis of novel heterostructured Fe 2O 3/Bi 2S 3 nanorods with   enhanced photocatalysis property through synergistic effect[J]. ACS
                 enhanced photocatalytic activity under visible light[J]. Applied   Appl Mater Interfaces, 2016, 8(31): 20274-20282.
                 Catalysis B: Environmental, 2017, 213: 18-27.     [28]  LOW J X, QIU S Q, XU D F, et al. Direct evidence and enhancement
            [13]  ASKARI N,  BEHESHTI M, MOWLA  D,  et al. Synthesis of   of surface plasmon resonance effect on Ag-loaded  TiO 2 nanotube
                 CuWO 4/Bi 2S 3 Z-scheme heterojunction with enhanced cephalexin   arrays for photocatalytic CO 2 reduction[J]. Applied Surface Science,
                 photodegradation[J]. Journal of Photochemistry and Photobiology A:   2018, 434: 423-432.
                 Chemistry, 2020, 394: 127-138.                [29]  QIU J H, ZHANG X G, XIE K L, et al. Noble metal nanoparticle-
            [14]  MANNA G, BOSE R, PRADHAN N. Photocatalytic Au-Bi 2S 3   functionalized Zr-metal organic frameworks with excellent
                 heteronanostructures[J]. Angew Chem Int Ed Engl, 2014, 53(26):   photocatalytic performance[J]. J  Colloid Interface Sci,  2019, 538:
                 6743-6746.                                        569-577.
            [15]  KURNAZ Y N,  ASLAN N, KOC M M. Structural and catalytic   [30]  QIU J H, YANG  L Y,  LI M,  et al. Metal nanoparticles decorated
                 properties of Fe 3O 4 doped Bi 2S 3 novel magnetic nanocomposites:   MIL-125-NH 2 and MIL-125 for efficient photocatalysis[J]. Materials
                 p-Nitrophenol case[J]. Journal of  Environmental  Chemical   Research Bulletin, 2019, 112: 297-306.
                 Engineering, 2020, 8(5): 1287-1299.           [31]  YU Y L, HUANG S L, GU Y, et al. Study of PbBiO 2X (X = Cl, Br
            [16]  WANG  Y, SUNARSO J, WANG F X,  et al.  Electrospinning and   and I) square nanoplates with efficient visible photocatalytic
                 hydrothermal synthesis of recyclable MoS 2/CNFs hybrid with   performance[J]. Applied Surface Science, 2018, 428: 844-850.
                 enhanced visible-light photocatalytic performance[J].  Ceramics   [32]  PEI  Y, LI X G,  CHU H,  et al. Anion-exchange  engineering of
                 International, 2017, 43(14): 11028-11033.         cookie-like  Bi 2S 3/Bi 2MoO 6  heterostructure  for  enhanced
            [17]  GU H H, HUANG Y P, ZUO L Z, et al. Graphene sheets wrapped   photocatalytic activities and gas-sensing properties[J]. Talanta, 2017,
                 carbon nanofibers as a highly conductive three-dimensional   165: 44-51.
                 framework  for perpendicularly anchoring of MoS 2: Advanced   [33]  YU D D, BAI J, LIANG H O, et al. Electrospinning, solvothermal,
                 electrocatalysts for hydrogen evolution reaction[J]. Electrochimica   and self-assembly synthesis of recyclable and renewable AgBr
                 Acta, 2016, 219: 604-613.                         TiO 2/CNFs with excellent visible-light responsive photocatalysis[J].
            [18]  ZHAO X H, WANG D Y, LIU S A, et al. Bi 2S 3 nanoparticles densely   Journal of Alloys and Compounds, 2016, 683: 329-338.
                 grown on electrospun-carbon-nanofibers as low-cost counter   [34]  CAO J Y, LI J J, CHU W, et al. Facile synthesis of Mn-doped BiOCl
                 electrode for liquid-state solar cells[J]. Materials Research Bulletin,   for metronidazole photodegradation: Optimization, degradation
                 2020, 125: 535-549.                               pathway, and mechanism[J]. Chemical Engineering  Journal, 2020,
            [19]  WANG Y, SUNARSO J, CHEN G H, et al. Photocatalytic activity of   400: 323-332.
                 novel Bi 2WO 6/CNFs composite synthesized  via two distinct   [35]  MA L B  (马立标), ZHANG B (张宾),  LIU R Z(柳荣展),  et al.
                 solvothermal steps[J]. Materials Letters, 2017, 197: 102-105.     Preparation and photocatalytic performance of potassium doped
            [20]  XIA Y,  LI Q, LV  K L,  et al. Heterojunction construction between   g-C 3N 4 sludge-based composite[J]. Fine Chemicals (精细化工),
                 TiO 2  hollowsphere and ZnIn 2S 4 flower for photocatalysis   2020, 37(11): 2255-2261.
                 application[J]. Applied Surface Science, 2017, 398: 81-88.     [36]  TRAN M L, NGUYEN C H, FU C C, et al. Hybridizing Ag-doped
            [21] LUO  W(罗伟), FENG X Q (冯晓青), HUANG  Y(黄影),  et al.   ZnO nanoparticles with graphite as potential photocatalysts for
                 Photocatalytic degradation of metronidazole using flower-like BiOCI   enhanced removal of metronidazole antibiotic from water[J]. J
                 prepared  by  microwave  hydrothermal  method.[J].  China  Environ Manage, 2019, 252: 109611.
                 Environmental Science(中国环境科学), 2020, 40(4): 1545-1554.     [37]  BAHAREH K, HABIBI M H. High photocatalytic activity of light-
            [22]  QIU J H,  LI M,  YANG L,  et al.  Facile construction of three-   driven Fe 2TiO 5 nanoheterostructure toward degradation of antibiotic
                 dimensional netted ZnIn 2S 4 by cellulose nanofibrils for efficiently   metronidazole[J]. Journal of  Industrial and Engineering  Chemistry,
                 photocatalytic reduction of Cr(Ⅵ)[J]. Chemical Engineering Journal,   2019, 80: 292-300.
   128   129   130   131   132   133   134   135   136   137   138