Page 138 - 《精细化工》2021年第9期
P. 138
·1852· 精细化工 FINE CHEMICALS 第 38 卷
反应为多相催化。 [11] YADAV C, MAKA V K, PAYRA S, et al. Multifunctional porous
organic polymers (POPs): Inverse adsorption of hydrogen over
nitrogen, stabilization of Pd(0) nanoparticles, and catalytic cross-coupling
表 4 查尔酮选择加氢反应的汞中毒实验 reactions and reductions[J]. Journal of Catalysis, 2020, 384: 61-71.
Table 4 Mercury poisoning experiments for the selective [12] QURESHI Z S, SARAWADE P B, ALBERT M, et al. Palladium
nanoparticles supported on fibrous-structured silica nanospheres
hydrogenation of chalcone (KCC-1): An efficient and selective catalyst for the transfer hydrogenation
of alkenes[J]. ChemCatChem, 2015, 7(4): 635-642.
①
序号 加入汞的时间/min 反应时间/min 转化率 /% [13] LIU C, LUO W, LIU J H, et al. Pt/ferric hydroxyphosphate: An
effective catalyst for the selective hydrogenation of α, β-unsaturated
1 0 20 0
aldehydes (ketones) into α,β-unsaturated alcohols[J]. Catalysis
2 10 20 67 Letters, 2018, 148(1): 555-563.
[14] SANTORI G F, MOGLIONI A G, VETERE V, et al. Hydrogenation
–6
① 通过 GC 数据获得;反应条件:Pd (2.67×10 mol), of aromatic ketones with Pt- and Sn-modified Pt catalysts[J]. Applied
Catalysis A: General, 2004, 269(1/2): 215-223.
–4
n(Hg)∶n(Pd)=300∶1,Hg(0.161g,8.02×10 mol),甲苯 [15] CHAHDOURA F, PRADEL C, GÓMEZ M. Palladium nanoparticles
–3
(2.300 g,0.025 mol),正庚烷(0.800 g,8.00×10 mol),正 in glycerol: A versatile catalytic system for C—X bond formation
–4
癸烷(0.050 g,3.51×10 mol,内标), p=1.01×10 Pa(H 2 气球), and hydrogenation processes[J]. Advanced Synthesis & Catalysis,
5
2013, 355(18): 3648-3660.
90 ℃。 [16] QUEFFÉLEC C, SCHLINDWEIN S H, GUDAT D, et al.
Wilkinson-type immobilized catalyst on diamond nanoparticles for
alkene reduction[J]. ChemCatChem, 2017, 9(3): 432-439.
3 结论 [17] WEI Z Z, GONG Y T, XIONG T Y, et al. Highly efficient and
chemoselective hydrogenation of α, β-unsaturated carbonyls over
Pd/N-doped hierarchically porous carbon[J]. Catalysis Science &
温控相分离 Pd 纳米催化剂在常压氢气下催化 α, Technology, 2015, 5(1): 397-404.
[18] DING Z C, LI C Y, CHEN J J, et al. Palladium/phosphorus-doped
β-不饱和酮选择加氢反应中,表现出了高的催化活 porous organic polymer as recyclable chemoselective and efficient
hydrogenation catalyst under ambient conditions[J]. Advanced Synthesis &
性和选择性,具有易于分离及可循环使用的特点。 Catalysis, 2017, 359(13): 2280-2287.
在最佳的反应条件下〔n(查尔酮)∶n(Pd)=500∶1, [19] XU Y C, WANG Y H, ZENG Y, et al. Thermoregulated phase-separable
catalysis for Rh nanoparticle catalyzed selective hydrogenation of
n(IL PEG1000 ) ∶ n(Pd)=100 ∶ 1 , 90 ℃, 20 min , 1,5-cyclooctadiene[J]. Chinese Journal of Catalysis, 2012, 33(12):
1871-1876.
5
p=1.01×10 Pa(H 2 气球)〕,催化反应的 TOF 值为 [20] ZENG Y, WANG Y H, XU Y C, et al. Rh nanoparticle catalyzed
hydroformylation of olefins in thermoregulated ionic liquid/organic
–1
1470 h ,高于目前文献中报道的常压氢气条件下过 biphasic system[J]. Chinese Journal of Catalysis, 2012, 33(3): 402-406.
[21] XU Y C, WANG Y H, LI K X, et al. Rh nanoparticle catalyzed
渡金属纳米催化剂催化查尔酮选择加氢反应的最高 hydroaminomethylation of 1-octene in thermoregulated ionic liquid
[9]
值 。在此工作基础上,可进一步拓展该纳米催化 and organic biphasic system[J]. Journal of Nanoscience and
Nanotechnology, 2013, 13(7): 5048-5052.
剂在其他底物选择加氢反应中的应用。 [22] ZENG Y, WANG Y H, XU Y C, et al. Pd nanoparticles in the
thermoregulated ionic liquid and organic biphasic system: An
efficient and recyclable catalyst for Heck reaction[J]. Catalysis
参考文献: Letters, 2013, 143(2): 200-205.
[23] RATHEESH KUMAR V K, GOPIDAS K R. Palladium nanoparticle-
[1] DORMÁN G, KOCSIS L, JONES R, et al. A benchtop continuous cored G1-dendrimer stabilized by carbon—Pd bonds: Synthesis,
flow reactor: A solution to the hazards posed by gas cylinder based characterization and use as chemoselective, room temperature
hydrogenation[J]. Journal of Chemical Health & Safety, 2013, 20(4): 3-8. hydrogenation catalyst[J]. Tetrahedron Letters, 2011, 52(24): 3102-3105.
[2] NAGENDIRAN A, PASCANU V, GÓMEZ A B, et al. Mild and [24] MORIMOTO N, YAMAMOTO S I, TAKEUCHI Y, et al. Palladium
selective catalytic hydrogenation of the C==C bond in α, β-unsaturated on graphene: The in situ generation of a catalyst for the chemoselective
carbonyl compounds using supported palladium nanoparticles[J]. reduction of α, β-unsaturated carbonyl compounds[J]. RSC Advances,
Chemistry-A European Journal, 2016, 22(21): 7184-7189. 2013, 3(36): 15608-15612.
[3] KOBORI M, SHINMOTO H, TSUSHIDA T, et al. Phloretin-induced [25] XU Y C (徐贻成). Thermoregulated phase-separable property of
apoptosis in B16 melanoma 4A5 cells by inhibition of glucose rhodium nanoparticle catalyst and its applications[D]. Dalian: Dalian
transmembrane transport[J]. Cancer Letters, 1997, 119(2): 207-212. University of Technology (大连理工大学), 2013.
[4] MENOT B, SALMON L, BOUQUILLON S. Platinum nanoparticles [26] LUO C C, ZHANG Y H, WANG Y G. Palladium nanoparticles in
stabilized by glycerodendrimers: Synthesis and application to the poly(ethyleneglycol): The efficient and recyclable catalyst for Heck
hydrogenation of α, β-unsaturated ketones under mild conditions[J]. reaction[J]. Journal of Molecular Catalysis A: Chemical, 2005,
European Journal of Inorganic Chemistry, 2015, 2015(27): 4518-4523. 229(1/2): 7-12.
[5] KHAN F A, SÜSS-FINK G. Superparamagnetic core-shell-type Fe 3O 4/Ru [27] ZHANG G P, ZHOU H H, HU J Q, et al. Pd nanoparticles catalyzed
nanoparticles as catalysts for the selective hydrogenation of an ligand-free Heck reaction in ionic liquid microemulsion[J]. Green
unconstrained α,β-unsaturated ketone[J]. European Journal of Chemistry, 2009, 11(9): 1428-1432.
Inorganic Chemistry, 2012, 2012(4): 727-732. [28] LAKSHMI K M, PARSHARAMULU T, MANORAMA S V.
[6] LIGUORI F, BARBARO P. Continuous flow synthesis of Rh and Pd Layered double hydroxides supported nano palladium: An efficient
nanoparticles onto ion-exchange borate monoliths: Application to catalyst for the chemoselective hydrogenation of olefinic bonds[J].
selective catalytic hydrogenation of unsaturated carbonyl compounds Journal of Molecular Catalysis A: Chemical, 2012, 365: 115-119.
under flow conditions[J]. Catalysis Science & Technology, 2014, [29] ZHAO Z H, WANG Y H. Thermoregulated phase-transfer Pd
4(11): 3835-3839. nanocatalyst for selective hydrogenation of 1,5-cyclooctadiene at
[7] ROJAS H, DÍAZ G, MARTÍNEZ J J, et al. Hydrogenation of α, atmospheric hydrogen pressure[J]. Catalysis Letters, 2020, 150(9):
β-unsaturated carbonyl compounds over Au and Ir supported on 2703-2708.
SiO 2[J]. Journal of Molecular Catalysis A: Chemical, 2012, 363/364: [30] REETZ M T, DUGAL M. Entrapment of nanostructured palladium
122-128. clusters in hydrophobic sol-gel materials[J]. Catalysis Letters, 1999,
[8] CONG Y K, ZENG X H. Nano Cu-CuFe 2O 4-catalyzed selective 58(4): 207-212.
reduction of α, β, γ, δ-unsaturated carbonyls in alcohol medium[J]. [31] WIDEGREN J A, FINKE R G. A review of the problem of
Chinese Journal of Organic Chemistry, 2020, 40(8): 2411-2418. distinguishing true homogeneous catalysis from soluble or other
[9] CHEN P, LI W J, WANG Y H. Atmospheric hydrogenation of α, metal-particle heterogeneous catalysis under reducing conditions[J].
β-unsaturated ketones catalyzed by highly efficient and recyclable Pd Journal of Molecular Catalysis A: Chemical, 2003, 198(1): 317-341.
nanocatalyst[J]. Catalysis Communications, 2019, 125: 10-14. [32] BHADRA M, SASMAL H S, BASU A, et al. Predesigned metal
[10] SODHI R K, PAUL S. Palladium(0) nanoparticles immobilized onto anchored building block for in situ generation of Pd nanoparticles in
silica/starch composite: Sustainable catalyst for hydrogenations and porous covalent organic framework: Application in heterogeneous
Suzuki coupling[J]. Bulletin of Chemical Reaction Engineering & tandem catalysis[J]. ACS Applied Materials & Interfaces, 2017,
Catalysis, 2019, 14(3): 586-603. 9(15): 13785-13792.