Page 145 - 《精细化工》2021年第9期
P. 145
第 9 期 王 维,等: 硅铝源对 Ni-Pd-La/Hβ 催化苯制环己基苯的影响 ·1859·
3 结论 and cyclohexanone from cyclohexylbenzene catalyzed by N-
hydroxyphthalimide (NHPI)[J]. Tetrahedron, 2005, 61(22): 5219-5222.
[10] YANG C H (杨春和), ZHANG T (张涛). Comparison of processes
用不同硅、铝原料制备的 Hβ 分子筛,晶型没 for cyclohexanone production[J]. Modern Chemical Industry (现代
有差别,但比表面积、酸量与分布及骨架 Al 原子分 化工), 2011, 31(1): 338-340.
[11] WANG W N (王闻年), WANG G W (王高伟), GAO H X (高焕新),
布都有明显差别。以 TEOS 和金属铝粉为硅、铝源 et al. Progress in synthesis of cyclohexylbenzene and the catalysts[J].
合成的 Hβ-2(25)分子筛,相比于用偏铝酸钠和硅 Chemical Industry and Engineering Progress (化工进展), 2019,
38(1): 324-333.
溶胶传统方法合成的 Hβ-3(25)分子筛有着更高的 [12] XIA Y T (夏玥穜), WEN L Y (温朗友), JI G (纪刚), et al. Progresses
比表面积。金属铝粉在 TEAOH 强碱作用下,原位 in synthesis of phenol and cyclohexanone by catalytic oxidation-
decomposition of cyclohexylbenzeneⅡcyclohexylbenzene oxidation-
生成的铝离子进入 Hβ 分子筛的骨架,使得 Al 原子 decomposition to phenol and cyclohexanone[J]. Petrochemical
在其中分布较均匀。 Technology (石油化工), 2016, 45(7): 769-775.
[13] FAHY J, TRIMM D L, COOKSON D J. Four component catalysis
以 TEOS 和金属铝粉为硅、铝源所合成 Hβ-2 for the hydroalkylation of benzene to cyclohexyl benzene[J]. Applied
制备的催化剂 Ni-Pd-La/Hβ-2(HAC-2)、相比于经 Catalysis A: General, 2001, 211(2): 259-268.
[14] ZHENG Y T (郑一天), SHAN Y H (单玉华), FENG Y Y (冯洋洋),
典方法制备的催化剂,对 BZ 加氢烷基化制备 CHB et al. Preparation and application of catalysts for hydroalkylation of
反应具有较高活性和 CHB 选择性。重复使用过程中 benzene to cyclohexylbenzene[J]. Fine Chemicals (精细化工), 2017,
34(10): 1161-1168.
HAC-2 呈现较好的稳定性。以 HAC-2(25)为催化剂, [15] JI G (纪刚), WEN L Y (温朗友), XIA Y T (夏玥穜), et al. Progresses
在 210 ℃、2.0 MPa H 2 反应 90 min,BZ 的转化率 in synthesis of phenol and cyclohexanone by catalytic oxidation-
decomposition of cyclohexylbenzeneⅠ. Hydroalkylation of benzene
可达 46.8%,CHB 的选择性可达 79.6%。催化剂重 to cyclohexylbenzene[J]. Petrochemical Technology (石油化工),
2016, 45(6): 641-647.
复使用 10 次后,BZ 转化率下降 2.0%、CHB 选择性
[16] MURTHA T P, ZUECH E A. Rare earth exchanged zeolites:
下降 1.3%、表面积炭率只有 0.21%。 US4329531[P]. 1982-05-11.
[17] QIU J (邱俊), XIAO C Z Y (小村贞一), TIAN H H (田好浩), et al.
Hβ-2 分子筛骨架中,Al 分布比较均匀,在微观 Synthesis of cyclohexylbenzene by hydroalkylation of benzene over
局部区域不易出现过浓的酸活性中心,从而抑制发 Pd/Hβ binary catalyst[J]. Chinese Journal of Catalysis (催化学报),
2007, 28(3): 246-250.
生积炭的副反应,使催化剂表现出较高的活性稳定 [18] DONG S S (董帅帅), SHAN Y H (单玉华), XU W J (徐文杰), et al.
性。酸活性中心分布均匀,也使得在金属中心生成 Study on catalysts for synthesis of cyclohexylbenzene by hydroalkylation
of benzene[J]. Modern Chemical Industry (现代化工), 2013, 33(8):
的环己烯能及时在邻近的酸活性中心发生烷基化反 73-77.
应,因此 HAC-2 催化剂表现出较高的 CHB 选择性。 [19] CAO Y (曹鹰), SHAN Y H (单玉华), SI K K (司坤坤), et al. Studies
on the catalyst and process of benzene hydroalkylation to
本研究提供了制备 Hβ 分子筛的新方法,对研 cyclohexylbenzene[J]. Petrochemical Technology (石油化工), 2015,
制酸性分布均匀的硅铝类分子筛具有指导意义。 44(2): 175-180.
[20] SUGGGIT R M, FALLS W, CRONE J M. Hydroalkylation process:
参考文献: US3839477[P]. 1974-10-01.
[21] CHRISTOPHER L B, MANHATTAN K S. Alkylating process:
[1] SATO K, HAMAKAWA S, NATSUI M, et al. Palladium-based US20160237013[P]. 2016-08-18.
bifunctional membrane reactor for one-step conversion of benzene to [22] JI G (纪刚), WEN L Y (温朗友), GAO L (郜亮), et al. Benzene
phenol and cyclohexanone[J]. Catalysis Today, 2010, 156(3): 276-281. hydroalkylation to cyclohexylbenzene over different zeolites supported
[2] SUN W Z, ZHANG S L, QIU J F, et al. Modeling the liquid phase Pd catalysts[J] Acta Petrolei Sinica (Petroleum Processing Section)
autoxidation of cyclohexylbenzene to hydroperoxide[J]. Chemical (石油学报: 石油加工) ,2020, 36(1): 70-77.
Engineering Research & Design, 2017, 124(8): 202-210. [23] LIU S P (刘树萍), YUE M B (岳明波), WANG Y M (王一萌).
[3] JI G (纪刚), WEN L Y (温朗友), GAO L (郜亮), et al. Benzene Phosphate-assisted one-step synthesis of mesoporous Hβ molecular
hydroalkylation to cyclohexylbenzene by Ni/HY catalyst over fixed sieve[J]. Acta Physico-Chimica Sinica (物理化学学报), 2010, 26(8):
bed reactor at low temperature[J]. Acta Petrolei Sinica (Petroleum 2224-2228.
Processing Section) (石油学报: 石油加工), 2019, 35(6): 1067-1076. [24] BOK T O, ONUCHIN E D, KONNOV S V, et al. Nanocrystalline
[4] LIU R Q (刘入强), SHAN Y H (单玉华), FENG D T (封东廷), et al. zeolites Hβ: Features of synthesis and properties[J]. Petroleum
Preparation of copper modified nickel-based catalysts and their Chemistry, 2016, 56(12): 1160-1167.
catalytic hydrogenation performance of biphenyl[J]. Fine Chemicals [25] FU W Q, SHEN R S, BAI E H, et al. Reaction route and mechanism
(精细化工), 2018, 35(8): 1320-1324. of the direct N-alkylation of sulfonamides on acidic mesoporous
[5] GUO X (郭馨), FANG Y J (方云进). Peroxidation of cyclohexylbenzene zeolite Hβ-catalyst[J]. ACS Catalysis, 2018, 8(10): 9043-9055.
on metal oxides catalysts[J]. Fine Chemicals (精细化工), 2010, 27(3): [26] QIU J, KOMURA K, KUBOTA Y, et al. Synthesis of cyclohexylbenzene
244-247. by hydroalkylation of benzene over Pd/Hβ binary catalyst[J]. Chinese
[6] TANG Z Y (唐致远), LIU Q (刘强), CHEN Y H (陈玉红). Application Journal of Catalysis, 2007, 28(3): 246-250.
of cyclohexyl benzene as overcharge protection additive in lithium [27] HAN S (韩松), WANG W (王伟), CHEN C L (陈长林), et al.
ion batteries[J]. CIESC Journal (化工学报), 2007, 58(2): 476-480. Promotion effect of Al on MCM-41 supported strong solid acid
[7] CHENG J C, DANDEKAR A B, STECKEL M A, et al. Hydroalkylation materials[J]. Journal of Chemical Engineering of Chinese Universities
of aromatic hydrocarbons: US6730625[P]. 1999-09-11. (高校化学工程学报), 2003, 17(3): 294-297.
[8] HOU R (侯蓉), SHAN Y H (单玉华), LI M S (李明时), et al. Catalytic [28] SUN X L (孙秀良), HUANG C P (黄崇品), ZHANG J (张傑), et al.
oxidation of cyclohexylbenzene to phenol and cyclohexanone[J]. Distribution of Al in Hβ molecular sieves and acid strength of BrΦnsted
Petrochemical Technology (石油化工), 2012, 41(9): 1023-1027. acid[J]. Acta Physico-Chimica Sinica (物理化学学报), 2009, 25(6):
[9] AOKI Y, SAKAGUCHI S, ISHII Y. One-pot synthesis of phenol 1136-1142.