Page 213 - 《精细化工》2021年第9期
P. 213
第 9 期 姚俊杰,等: 琥珀酰亚胺酯基类偶氮染料的制备及其超临界 CO 2 羊毛清洁化染色 ·1927·
266-273. [13] SCHMIDT A, BACH E, SCHOLLMEYER E. The dyeing of natural
[5] ZHENG L J, ZHENG H D, DU B, et al. Dyeing procedures of fibres with reactive disperse dyes in supercritical carbon dioxide[J].
polyester fiber in supercritical carbon dioxide using a special dyeing Dyes and Pigments, 2003, 56(1): 27-35.
frame[J]. Journal of Engineered Fibers and Fabrics, 2015, 10(4): [14] LIU Z T, ZHANG L L, LIU Z W, et al. Supercritical CO 2 dyeing of
37-46. ramie fiber with disperse dye[J]. Industrial & Engineering Chemistry
[6] HU J H (胡金花), YAN J (闫俊), PENG J J (彭健钧), et al. Study on Research, 2006, 45(26): 8932-8938.
supercritical carbon dioxide dyeing of polyester and brocade [15] LONG J J, CUI C L, WANG L, et al. Effect of treatment pressure on
composite fabric[J]. Shanghai Textile Science & Technology (上海纺 wool fiber in supercritical carbon dioxide fluid[J]. Journal of Cleaner
织科技), 2019, 47(3): 58-60. Production, 2013, 43: 52-58.
[7] FAN Y, ZHANG Y Q, YAN K, et al. Synthesis of a novel disperse [16] ZHENG H D, XU Y Y, ZHANG J, et al. An ecofriendly dyeing of
reactive dye involving a versatile bridge group for the sustainable wool with supercritical carbon dioxide fluid[J]. Journal of Cleaner
coloration of natural fibers in supercritical carbon dioxide[J]. Production, 2017, 143: 269-277.
Advanced Science, 2019, 6(1): 1801368-1801381. [17] LI F X, LYU L H, WANG X J, et al. Constructing of dyes suitable
[8] FERNANDEZ CID M V, VAN SPRONSEN J, VAN DER KRAAN for eco-friendly dyeing wool fibers in supercritical carbon dioxide[J].
M, et al. A significant approach to dye cotton in supercritical carbon ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16726-16733.
dioxide with fluorotriazine reactive dyes[J]. Journal of Supercritical [18] BARBARELLA G, ZAMBIANCHI M, VENTOLA A, et al. Bright
Fluids, 2007, 40(3): 477-484. oligothiophene N-succinimidyl esters for efficient fluorescent
[9] LIU M, ZHAO H J, WU J S, et al. Eco-friendly curcumin-based dyes labeling of proteins and oligonucleotides[J]. Bioconjugate Chemistry,
for supercritical carbon dioxide natural fabric dyeing[J]. Journal of 2006, 17(1): 58-67.
Cleaner Production, 2018, 197: 1262-1267. [19] PENG X J, YANG Z G, WANG J Y, et al. Fluorescence ratiometry
[10] GAO D, YANG D F, CUI H S, et al. Synthesis and measurement of and fluorescence lifetime imaging: Using a single molecular sensor for
solubilities of reactive disperse dyes for dyeing cotton fabrics in dual mode imaging of cellular viscosity[J]. Journal of the American
supercritical carbon dioxide[J]. Industrial & Engineering Chemistry Chemical Society, 2011, 133, 17: 6626-6635.
Research, 2014, 53(36): 13862-13870. [20] JIA M K, HU H N, XIONG X Q, et al. Investigation on the
[11] ZHANG Y Q, WEI X C, LONG J J. Ecofriendly synthesis and construction, photophysical properties and dyeing mechanism of 1,
application of special disperse reactive dyes in waterless coloration 8-naphthalimide-based fluorescent dyes suitable for dyeing wool
of wool with supercritical carbon dioxide[J]. Journal of Cleaner fibers in supercritical CO 2[J]. Dyes and Pigments, 2021,
Production, 2016, 133: 746-756. 190:109343-109354.
[12] FERNANDEZ CID M V, VAN SPRONSEN J, VAN DER KRAAN [21] YAN K, ZHANG Y Q, XIAO H, et al. Development of a special
M, et al. Excellent dye fixation on cotton dyed in supercritical carbon SCFX-AnB3L dye and its application in ecological dyeing of silk
dioxide using fluorotriazine reactive dyes[J]. Green Chemistry, 2005, with supercritical carbon dioxide[J]. Journal of CO 2 Utilization,
7(8): 609-616. 2019, 35: 67-78.
(上接第 1919 页) [22] DING S Y (丁思月), YAO Y W (姚玥玮), FANG Q K (方霁堃).
[14] PATEL R H, MISHRA V K. Effect of increasing NCO ratio on Synthesis and application of reactive oligomeric organic phosphonate
properties of flame retardant di-phosphorous based polyether ester flame retardant[J]. Polyurethane Industry (聚氨酯工业), 2012, 27(6):
urethanes[J]. Progress in Organic Coatings, 2020, 141: 105533-105539. 17-20.
[15] XU D Y (徐大勇), ZOU M G (邹明国), MAO W Y (毛维友). A [23] PARKS J R, VAN WAZER J R. Structure and properties of the
halogen-free organic phosphate flame retardant and preparation condensed phosphates. Ⅻ . Reorganization theory and some
method thereof: CN103360606A[P]. 2013-10-23. applications[J]. Journal of the American Chemical Society, 1957,
[16] RAO W H, ZHU Z M, WANG S X, et al. A reactive phosphorus- 79(18): 4890-4897.
containing polyol incorporated into flexible polyurethane foam: [24] SCHEP R A, NOVAL S, COETZEE J H J. Condensed
Self-extinguishing behavior and mechanism[J]. Polymer Degradation methylphosphates. Separation by molecular distillation[J]. Inorganic
and Stability, 2018, 153: 192-200. Chemistry, 1973, 12(11): 2711-2713.
[17] ZHANG T (张通), ZHENG Y Y (郑玉婴), CHEN D X (陈德贤), et [25] ZHANG Q, CHEN F G, MA L, et al. Preparation and application of
al. Synthesis of reactive phosphate ester and its effect on flame phosphorous-containing bio-polyols in polyurethane foams[J].
retardant and mechanical properties of TPU[J]. Jorunal of Functional Journal of Applied Polymer Science, 2014, 131(12): 40422.
Materials (功能材料), 2012, 43(13): 1733-1736. [26] QIAN L J (钱立军), FENG F F (冯发飞), XU G Z (许国志).
[18] HUA J L (花金龙), LI W X (李文霞). Study on preparation and Comparative study on two kinds of phosphorous flame retardant in
application of new phosphate ester flame retardant[J]. Journal of polyurethane rigid foam[J]. China Plastics Industry (塑料工业),
Beijing Institute of Fashion Technology (北京服装学院学报), 2009, 2013, 41(8): 100-103.
29(2): 41-46. [27] ZHAO X Y (赵新叶), XU Y (徐洋), WANG J L (王俊龙), et al.
[19] PATEL R H, SHAH M D, PATEL H B. Synthesis and Synthesis of ethyl neopentyl glycol phosphate and test of flame
characterization of structurally modified polyurethanes based on retardant performance[J]. Fine Chemicals (精细化工), 2019, 36(8):
castor oil and phosphorus-containing polyol for flame-retardant 1684-1688.
coatings[J]. International Journal of Polymer Analysis & [28] FENG Y L (冯月兰), LI Q F (李其峰), YIN N (殷宁), et al.
Characterization, 2011, 16(2): 107-117. Influence of expandable graphite on comprehensive performance of
[20] RAO W H, XU H X, XU Y J, et al. Persistently flame-retardant all-water blown flame retardant rigid polyurethane foams[J].
flexible polyurethane foams by a novel phosphorus-containing Chemical Propellants & Polymeric Materials (化学推进剂与高分子
polyol[J]. Chemical Engineering Journal, 2018, 343: 198-206. 材料), 2013, 11(4): 58-61.
[21] ZHANG W, XUE W L, ZENG Z X, et al. Synthesis and properties of [29] JIANG H H (姜浩浩), WANG L (王丽), LIU X L (刘新亮), et al.
flame-retardant reactive hot melt polyurethane adhesive[J]. Journal Melamine cyanurate flame-retardant polyurethane rigid foam[J].
of Adhesion Science & Technology, 2020, 34(2): 178-191. Plastics (塑料), 2020, 49(2): 18-22.