Page 76 - 《精细化工》2021年第9期
P. 76
·1790· 精细化工 FINE CHEMICALS 第 38 卷
探测器在 405 nm 激光下能实现快速响应,其上升和 harvester toward excellent photocatalytic and photoelectrochemical
下降时间分别为 47 和 45 ms。 performance[J]. International Journal of Hydrogen Energy, 2020,
45(11): 6519-6528.
[14] XUE H, WANG Y D, DAI Y Y, et al. A MoSe 2/WSe 2 heterojunction-
参考文献: based photodetector at telecommunication wavelengths[J]. Advanced
[1] BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent Functional Materials, 2018, 28(47): 1804388-1804408.
generation with two-dimensional van der Waals semiconductors[J]. [15] SKRABALAK S E, SUSLICK K S. Porous MoS 2 synthesized by
Chemical Society Reviews, 2015, 44(11): 3691-3718. ultrasonic spray pyrolysis[J]. Journal of the American Chemical Society,
[2] CAO J L (曹机良), DU Y Y (杜远远), BAI J S (白金山), et al. 2005, 127(28): 9990-9991.
Preparation and properties of graphene electric conductive polyester [16] ZHANG X J, QIAO H X, NIAN X F, et al. Resistive switching
fabrics[J]. Fine Chemicals (精细化工), 2020, 37(7): 1478-1483. memory behaviours of MoSe 2 nano-islands array[J]. Journal of
[3] WANG R P (王瑞平), YU H (余煌), YUAN C L (袁长龙), et al. Materials Science Materials in Electronics, 2016, 27(7): 7609-7613.
Nanocellulose/epoxy resin composites as flexible organic solar cell [17] MAO S S, ELSHEKH H, KADHIM M S, et al. An excellent resistive
substrates[J]. Fine Chemicals (精细化工), 2019, 36(3): 499-505. switching memory behaviour based on assembled MoSe 2 nanosphere
[4] TAN C, CAO X, WU X J, et al. Recent advances in ultrathin arrays[J]. Journal of Solid State Chemistry, 2019, 279: 120975.
two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): [18] FAN C, WEI Z M, YANG S X, et al. Synthesis of MoSe 2 flower-like
6225-6331. nanostructures and their photo-responsive properties[J]. RSC Advances,
[5] BAO Y (鲍艳), WEI Y M (魏艳敏). Research progress on two- 2013, 4(2): 775-778.
dimensional layered materials in coating anticorrosion[J]. Fine [19] GONG Q F, CHENG L, LIU C F, et al. Ultrathin MoS 2(1–x) Se 2x alloy
Chemicals (精细化工), 2020, 37(12): 2406-2414. nanoflakes for electrocatalytic hydrogen evolution reaction[J]. ACS
[6] XU M S, LIANG T, SHI M M, et al. Graphene-like two-dimensional Catalysis, 2015, 5(4): 2213-2219.
materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. [20] KUFER D, KONSTANTATOS G. Highly sensitive, encapsulated
[7] TANG J, LI Y, CHEN X, et al. Li adsorption on a monolayer MoS 2 photodetector with gate controllable gain and speed[J]. Nano
MoS 2[J]. Journal of Computational & Theoretical Nanoscience, letters, 2015,15(11): 7307-7313.
2016, 13(11): 8765-8771. [21] YAN C Y, WANG J X, WANG X, et al. An Intrinsically stretchable
[8] ZAFAR A, ZAFAR Z, ZHAO W W, et al. Sulfur-mastery: Precise nanowire photodetector with a fully embedded structure[J]. Advanced
synthesis of 2D transition metaldichalcogenides[J]. Advanced Materials, 2014, 26(6): 943-950.
Functional Materials, 2019, 29(27): 1809261. [22] PEI Y L, PEI R H, LIANG X C, et al. CdS-nanowires flexible
[9] SHAW J C, ZHOU H L, CHEN Y, et al. Chemical vapor deposition growth photo-detector with Ag-nanowires electrode based on non-transfer
of monolayer MoSe 2 nanosheets[J]. Nano Research, 2015, 7(4): 511-517. process[J]. Scientific Reports, 2016, 6(1): 1-10.
[10] JOHNSON A D, CHENG F, TSAI Y, et al. Giant enhancement of [23] FU Q M, PENG J L, YAO Z C, et al. Highly sensitive ultraviolet
defect-bound exciton luminescence and suppression of band-edge photodetectors based on ZnO/SnO 2 core-shell nanorod arrays[J].
luminescence in monolayer WSe 2-Ag plasmonic hybrid structures[J]. Applied Surface Science, 2020, 527: 146923-146930.
Nano Letters, 2017, 17(7): 4317-4322. [24] XIA J, HUANG X, LIU L Z, et al. CVD synthesis of large-area,
[11] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors highly crystalline MoSe 2 atomic layers on diverse substrates and
based on graphene, other two-dimensional materials and hybrid application to photodetectors[J]. Nanoscale, 2014, 6(15): 8949-8955.
systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793. [25] VELUSAMY D B, HAQUE M A, PARIDA M R, et al. 2D organic-
[12] LARENTIS S, FALLAHAZAD B, TUTUC E. Field-effect transistors inorganic hybrid thin films for flexible UV-Visible photodetectors[J].
and intrinsic mobility in ultra-thin MoSe 2 layers[J]. Applied Physics Advanced Functional Materials, 2017, 27(15): 1605554-1605563.
Letters, 2012, 101(22): 223104-223108. [26] CHEN X H (陈新行). Construction and performances of photodetectors
[13] ZHANG J, TIAN P H, TANG T, et al. Ultrathin MoSe 2 three-dimensional based on tin disulfide and its composites photodetector[D]. Xiangtan:
nanospheres as high carriers transmission channel and full spectrum Xiangtan University (湘潭大学), 2018.
(上接第 1784 页) absorption[J]. Composites Part B: Engineering, 2020, 193: 108028.
[29] HUANG L X, DUAN Y P, DAI X H, et al. Bioinspired metamaterials:
[24] DONG X L, ZHANG X F, HUANG H, et al. Enhanced microwave Multibands electromagnetic wave adaptability and hydrophobic
absorption in Ni/polyaniline nanocomposites by dual dielectric characteristics[J]. Small, 2019, 15(40): 1902730.
relaxations[J]. Applied Physics Letters, 2008, 92(1): 013127. [30] CHENG D K. Field and wave electronicmagnetics[M]. 2nd ed.
[25] XIE P T, LI H Y, HE B, et al. Bio-gel derived nickel/carbon Beijing: Tsinghua University Press, 2007.
nanocomposites with enhanced microwave absorption[J]. Journal of [31] TONG C M (童创明), LIANG J G (梁建刚), JU Z Q (鞠智芹), et al.
Materials Chemistry C, 2018, 6(32): 8812-8822. Electromagnetic field microwave technology and antenna (in Chinese)
[26] ZHAO Y P, ZHANG H, YANG X, et al. In situ construction of [M]. Xi'an: Northwestern Polytechnical University Press (西北工业
hierarchical core-shell Fe 3O 4@C nanoparticles-helical carbon 大学出版社), 2009.
nanocoil hybrid composites for highly efficient electromagnetic wave [32] LIU P B, HUANG Y, YANG Y, et al. Sandwich structures of graphene@
absorption[J]. Carbon, 2021, 171: 395-408. Fe 3O 4@PANI decorated with TiO 2 nanosheets for enhanced
[27] LIU Q H, CAO Q, BI H, et al. CoNi@SiO 2@TiO 2 and CoNi@Air@ electromagnetic wave absorption properties[J]. Journal of Alloys and
TiO 2 microspheres with strong wideband microwave absorption[J]. Compounds, 2016, 662: 63-68.
Advanced Materials, 2016, 28(3): 486-490. [33] WANG Y, WU X M, ZHANG W Z, et al. 3D heterostructure of
[28] ZHANG Y H, MENG H J, SHI Y P, et al. TiN/Ni/C ternary composites graphene@Fe 3O 4@WO 3@PANI: Preparation and excellent microwave
with expanded heterogeneous interfaces for efficient microwave absorption performance[J]. Synthetic Metals, 2017, 231: 7-14.