Page 76 - 《精细化工》2021年第9期
P. 76

·1790·                            精细化工   FINE CHEMICALS                                 第 38 卷

            探测器在 405 nm 激光下能实现快速响应,其上升和                            harvester toward excellent photocatalytic  and photoelectrochemical
            下降时间分别为 47 和 45 ms。                                    performance[J]. International Journal  of Hydrogen Energy, 2020,
                                                                   45(11): 6519-6528.
                                                               [14]  XUE H, WANG Y D, DAI Y Y, et al. A MoSe 2/WSe 2 heterojunction-
            参考文献:                                                  based photodetector at telecommunication wavelengths[J]. Advanced
            [1]   BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent   Functional Materials, 2018, 28(47): 1804388-1804408.
                 generation with two-dimensional van der  Waals semiconductors[J].   [15]  SKRABALAK S E, SUSLICK K S.  Porous MoS 2 synthesized by
                 Chemical Society Reviews, 2015, 44(11): 3691-3718.   ultrasonic spray pyrolysis[J]. Journal of the American Chemical Society,
            [2]   CAO J  L (曹机良),  DU Y Y  (杜远远), BAI J S (白金山), et al.   2005, 127(28): 9990-9991.
                 Preparation and properties of graphene electric conductive polyester   [16]  ZHANG X J, QIAO H  X,  NIAN X  F,  et al. Resistive switching
                 fabrics[J]. Fine Chemicals (精细化工), 2020, 37(7): 1478-1483.   memory behaviours of MoSe 2  nano-islands array[J]. Journal of
            [3]   WANG  R P (王瑞平), YU H (余煌), YUAN C L (袁长龙), et al.   Materials Science Materials in Electronics, 2016, 27(7): 7609-7613.
                 Nanocellulose/epoxy resin composites as flexible organic solar cell   [17]  MAO S S, ELSHEKH H, KADHIM M S, et al. An excellent resistive
                 substrates[J]. Fine Chemicals (精细化工), 2019, 36(3): 499-505.   switching memory behaviour based on assembled MoSe 2 nanosphere
            [4]   TAN  C, CAO X,  WU X J,  et al. Recent advances in ultrathin   arrays[J]. Journal of Solid State Chemistry, 2019, 279: 120975.
                 two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9):   [18]  FAN C, WEI Z M, YANG S X, et al. Synthesis of MoSe 2 flower-like
                 6225-6331.                                        nanostructures and their photo-responsive properties[J]. RSC Advances,
            [5]   BAO Y (鲍艳),  WEI Y M (魏艳敏). Research progress on two-   2013, 4(2): 775-778.
                 dimensional layered materials in coating anticorrosion[J]. Fine   [19]  GONG Q F, CHENG L, LIU C F, et al. Ultrathin MoS 2(1–x) Se 2x alloy
                 Chemicals (精细化工), 2020, 37(12): 2406-2414.        nanoflakes for electrocatalytic hydrogen evolution reaction[J]. ACS
            [6]   XU M S, LIANG T, SHI M M, et al. Graphene-like two-dimensional   Catalysis, 2015, 5(4): 2213-2219.
                 materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798.   [20]  KUFER D,  KONSTANTATOS G. Highly sensitive, encapsulated
            [7]   TANG J, LI  Y, CHEN X,  et al. Li adsorption on a monolayer   MoS 2 photodetector with gate controllable gain and speed[J]. Nano
                 MoS 2[J]. Journal of Computational  &  Theoretical Nanoscience,   letters, 2015,15(11): 7307-7313.
                 2016, 13(11): 8765-8771.                      [21]  YAN C Y, WANG J X, WANG X, et al. An Intrinsically stretchable
            [8]   ZAFAR A,  ZAFAR Z, ZHAO  W  W, et al. Sulfur-mastery: Precise   nanowire  photodetector  with a fully embedded  structure[J]. Advanced
                 synthesis of 2D transition metaldichalcogenides[J].  Advanced   Materials, 2014, 26(6): 943-950.
                 Functional Materials, 2019, 29(27): 1809261.   [22]  PEI Y  L, PEI R  H, LIANG  X  C,  et al. CdS-nanowires flexible
            [9]   SHAW J C, ZHOU H L, CHEN Y, et al. Chemical vapor deposition growth   photo-detector with Ag-nanowires electrode based on non-transfer
                 of monolayer MoSe 2 nanosheets[J]. Nano Research, 2015, 7(4): 511-517.   process[J]. Scientific Reports, 2016, 6(1): 1-10.
            [10]  JOHNSON A D,  CHENG F, TSAI Y,  et al. Giant enhancement of   [23]  FU Q M, PENG J L, YAO  Z C,  et al. Highly sensitive ultraviolet
                 defect-bound exciton luminescence and suppression  of  band-edge   photodetectors based on ZnO/SnO 2 core-shell nanorod  arrays[J].
                 luminescence in monolayer WSe 2-Ag plasmonic hybrid structures[J].   Applied Surface Science, 2020, 527: 146923-146930.
                 Nano Letters, 2017, 17(7): 4317-4322.         [24]  XIA J, HUANG  X, LIU L  Z,  et al. CVD synthesis of  large-area,
            [11]  KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors   highly crystalline MoSe 2 atomic layers on  diverse substrates and
                 based on graphene, other two-dimensional materials and hybrid   application to photodetectors[J]. Nanoscale, 2014, 6(15): 8949-8955.
                 systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.   [25]  VELUSAMY D B, HAQUE M A, PARIDA M R, et al. 2D organic-
            [12]  LARENTIS S, FALLAHAZAD B, TUTUC E. Field-effect transistors   inorganic hybrid thin films for flexible UV-Visible photodetectors[J].
                 and intrinsic mobility in ultra-thin MoSe 2 layers[J]. Applied Physics   Advanced Functional Materials, 2017, 27(15): 1605554-1605563.
                 Letters, 2012, 101(22): 223104-223108.        [26]  CHEN X H (陈新行). Construction and performances of photodetectors
            [13]  ZHANG J, TIAN P H, TANG T, et al. Ultrathin MoSe 2 three-dimensional   based on tin disulfide and its composites photodetector[D]. Xiangtan:
                 nanospheres as high carriers transmission channel and full spectrum   Xiangtan University (湘潭大学), 2018.

            (上接第 1784 页)                                           absorption[J]. Composites Part B: Engineering, 2020, 193: 108028.
                                                               [29]  HUANG L X, DUAN Y P, DAI X H, et al. Bioinspired metamaterials:
            [24]  DONG X L, ZHANG X F, HUANG H, et al. Enhanced microwave   Multibands electromagnetic wave adaptability and  hydrophobic
                 absorption in Ni/polyaniline nanocomposites by dual dielectric   characteristics[J]. Small, 2019, 15(40): 1902730.
                 relaxations[J]. Applied Physics Letters, 2008, 92(1): 013127.   [30]  CHENG D K. Field and wave electronicmagnetics[M]. 2nd ed.
            [25]  XIE P T, LI H  Y, HE B,  et al. Bio-gel  derived nickel/carbon   Beijing: Tsinghua University Press, 2007.
                 nanocomposites with enhanced microwave absorption[J]. Journal of   [31]  TONG C M (童创明), LIANG J G (梁建刚), JU Z Q (鞠智芹), et al.
                 Materials Chemistry C, 2018, 6(32): 8812-8822.    Electromagnetic field microwave technology and antenna (in Chinese)
            [26]  ZHAO Y P, ZHANG H,  YANG  X,  et al.  In situ construction of   [M]. Xi'an: Northwestern Polytechnical University Press (西北工业
                 hierarchical core-shell Fe 3O 4@C nanoparticles-helical  carbon   大学出版社), 2009.
                 nanocoil hybrid composites for highly efficient electromagnetic wave   [32]  LIU P B, HUANG Y, YANG Y, et al. Sandwich structures of graphene@
                 absorption[J]. Carbon, 2021, 171: 395-408.        Fe 3O 4@PANI decorated with  TiO 2 nanosheets for enhanced
            [27]  LIU Q H, CAO Q, BI H, et al. CoNi@SiO 2@TiO 2 and CoNi@Air@   electromagnetic wave absorption properties[J]. Journal of Alloys and
                 TiO 2 microspheres  with strong wideband microwave absorption[J].   Compounds, 2016, 662: 63-68.
                 Advanced Materials, 2016, 28(3): 486-490.     [33]  WANG  Y, WU X  M, ZHANG W Z,  et al.  3D heterostructure  of
            [28]  ZHANG Y H, MENG H J, SHI Y P, et al. TiN/Ni/C ternary composites   graphene@Fe 3O 4@WO 3@PANI: Preparation and excellent microwave
                 with expanded heterogeneous interfaces for efficient microwave   absorption performance[J]. Synthetic Metals, 2017, 231: 7-14.
   71   72   73   74   75   76   77   78   79   80   81