Page 213 - 《精细化工》2022年第1期
P. 213
第 1 期 韦 宇,等: 铜渣基化学键合陶瓷材料吸附 Cr(Ⅵ)的性能及机理 ·203·
工), 2016, (2): 26-29. [19] SINGH V, SINGH J, MISHRA V. Development of a cost-effective,
[10] FENDORF S, WIELINGA B W, HANSEL C M. Chromium recyclable and viable metal ion doped adsorbent for simultaneous
transformations in natural environments: The role of biological and adsorption and reduction of toxic Cr( Ⅵ ) ions[J]. Journal of
abiological processes in chromium(Ⅵ) reduction[J]. International Environmental Chemical Engineering, 2021, 9(2): 105124.
Geology Review, 2000, 42(8): 691-701. [20] ZENG H T, ZENG H H, ZHANG H, et al. Efficient adsorption of
[11] CREAN D E, COKER V S, LAAN G, et al. Engineering biogenic Cr(Ⅵ) from aqueous environments by phosphoric acid activated
magnetite for sustained Cr(Ⅵ) remediation in flow-through systems eucalyptus biochar[J]. Journal of Cleaner Production, 2020, 286:
[J]. Environmental Science & Technology, 2012, 46(6): 3352. 124964.
[12] Science and Technology Standards Department of the State [21] LEI Z J (雷增江), YANG B (杨斌), YANG J H (杨金辉), et al.
Environmental Protection Bureau. Conventional analysis with smoking Adsorption performance and mechanism of Cr(Ⅵ) by aluminum
machine definition and standard conditions: GB/T 1555.5—1995[S]. sludge composite gel spheres[J]. Fine Chemicals (精细化工), 2021,
Beijing: China Standard Press (中国标准出版社), 1995. 38(7): 1450-1458.
[13] YUAN Z H (袁忠华). Preliminary study on the migration activity of [22] SHI Y Y, SHAN R, LU L L, et al. High-efficiency removal of Cr(Ⅵ)
copper and zinc in paddy soil and its control technique[D]. by modified biochar derived from glue residue[J]. Journal of Cleaner
Changchun: Jilin Agricultural University (吉林农业大学), 2015. Production, 2020, 254: 119935.
[14] YU Z G (于志刚). Preparation of different crystalline magnetic iron [23] KAYA S, OGASAWARA H, NILSSON A. Determination of the surface
oxides and their adsorption of Pb(Ⅱ) and Cd(Ⅱ)[D]. Changsha: electronic structure of Fe 3O 4(Ⅲ) by soft X-ray spectroscopy[J].
Hunan University (湖南大学), 2016. Catalysis Today, 2014, 240: 184-189.
3+
2+
[15] FU Y Z (符义忠). Preparation of oxalate chemical cementitious [24] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe and Fe
material based on nickel-iron slag and study on adsorption property ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):
of Cr( Ⅵ )[D]. Kunming: Kunming University of Science and 2441-2449.
Technology (昆明理工大学), 2020. [25] CAI W Q, WEI J H, LI Z L, et al. Preparation of amino-functionalized
[16] SHANG J, GUO Y N, HE D L, et al. A novel graphene oxide- magnetic biochar with excellent adsorption performance for Cr(Ⅵ)
dicationic ionic liquid composite for Cr(Ⅵ) adsorption from aqueous by a mild one-step hydrothermal method from peanut hull[J]. Colloids
solutions[J]. Journal of Hazardous Materials, 2021, 416(12): 125706. & Surfaces A Physicochemical & Engineering Aspects, 2019, 563:
[17] DONG F X, YAN L, ZHOU X H, et al. Simultaneous adsorption of 102-111.
Cr (Ⅵ) and phenol by biochar-based iron oxide composites in water: [26] HU Y F (胡亚非), XIONG J J (熊建军). Experimental study on
Performance, kinetics and mechanism[J]. Journal of Hazardous porosity measurement of graphite porous materials[J]. Lubrication
Materials, 2021, 416: 125930. Engineering (润滑与密封), 2010, 35(10): 99-101.
[18] YANG Y, ZHANG Y H, WANG G Y, et al. Adsorption and reduction [27] SING K S, EVERETT D H, HAUL R A W, et al. Reporting
of Cr(Ⅵ) by a novel nanoscale FeS/chitosan/biochar composite from physisorption data for gas/solid systems with special reference to the
aqueous solution[J]. Journal of Environmental Chemical Engineering, determination of surface area and porosity (Recommendations 1984)
2021, 9(4): 105407. [J]. Pure & Applied Chemistry, 1985, 57(4): 603-619.
(上接第 113 页) Applied Catalysis A: General, 2006, 306: 58-67.
[18] DO T H, VAN C N, TSAI K A, et al. Superior photoelectrochemical [26] AMOUZEGAR Z, NAGHIZADEH R, REZAIE H R, et al. Microwave
activity of self-assembled NiWO 4-WO 3 heteroepitaxy[J]. Nano engineering of ZnWO 4 nanostructures: Towards morphologically
Energy, 2016, 23: 153-160. favorable structures for photocatalytic activity[J]. Ceramics
[19] CHEN H H, XIONG X Q, HAO L L, et al. Improved visible light International, 2015, 41(7): 8352-8359.
photocatalytic activity of WO 3 through CuWO 4 for phenol [27] ZHAO X, ZHU Y F. Synergetic degradation of rhodamine B at a
degradation[J]. Applied Surface Science, 2016, 389: 491-495. porous ZnWO 4 film electrode by combined electro-oxidation and
[20] YOUREY J E, KURTZ J B, BARTLETT B M. Water oxidation on a photocatalysis[J]. Environmental Science & Technology, 2006,
3–
CuWO 4-WO 3 composite electrode in the presence of [Fe(CN) 6] : 40(10): 3367-3372.
Toward solar Z-scheme water splitting at zero bias[J]. The Journal of [28] WEI L J, ZHANG H M, CAO J. Electrospinning of Ag/ZnWO 4/WO 3
Physical Chemistry C, 2012, 116(4): 3200-3205. composite nanofibers with high visible light photocatalytic activity[J].
[21] NAM K M, CHEON E A, SHIN W J, et al. Improved Materials Letters, 2019, 236: 171-174.
photoelectrochemical water oxidation by the WO 3/CuWO 4 composite [29] LI W, CAO L Y, KONG X G, et al. In situ synthesis and
with a manganese phosphate electrocatalyst[J]. Langmuir, 2015, photocatalytic performance of WO 3/ZnWO 4 composite powders[J].
31(39): 10897-10903. RSC Advances, 2016, 6(28): 23783-23789.
[22] SALIMI R, ALVANI A A S, MEI B T, et al. Ag-functionalized [30] LEONARD K C, NAM K M, LEE H C, et al. ZnWO 4/WO 3
CuWO 4/WO 3 nanocomposites for solar water splitting[J]. New composite for improving photoelectrochemical water oxidation[J].
Journal of Chemistry, 2019, 43(5): 2196-2203. The Journal of Physical Chemistry C, 2013, 117(31): 15901-
[23] CHEN S J, ZHOU J H, CHEN X T, et al. Fabrication of 15910.
nanocrystalline ZnWO 4 with different morphologies and sizes via [31] KEEREETA Y, THONGTEM S, THONGTEM T. Enhanced
hydrothermal route[J]. Chemical Physics Letters, 2003, 375(1/2): photocatalytic degradation of methylene blue by WO 3/ZnWO 4
185-190. composites synthesized by a combination of microwave-
[24] LIN S, CHEN J B, WENG X L, et al. Fabrication and photocatalysis solvothermal method and incipient wetness procedure[J]. Powder
of mesoporous ZnWO 4 with PAMAM as a template[J]. Materials Technology, 2015, 284: 85-94.
Research Bulletin, 2009, 44(5): 1102-1105. [32] CUI Y, PAN L, CHEN Y, et al. Defected ZnWO 4-decorated WO 3
[25] FU H B, LIN J, ZHANG L W, et al. Photocatalytic activities of a nanorod arrays for efficient photoelectrochemical water splitting[J].
novel ZnWO 4 catalyst prepared by a hydrothermal process[J]. RSC Advances, 2019, 9(10): 5492-5500.