Page 213 - 《精细化工》2022年第1期
P. 213

第 1 期                  韦   宇,等:  铜渣基化学键合陶瓷材料吸附 Cr(Ⅵ)的性能及机理                               ·203·


                 工), 2016, (2): 26-29.                         [19]  SINGH V, SINGH J, MISHRA V. Development of a cost-effective,
            [10]  FENDORF S,  WIELINGA B  W,  HANSEL C M.  Chromium   recyclable and viable metal ion doped adsorbent  for  simultaneous
                 transformations in natural environments: The role of biological and   adsorption and reduction of toxic Cr( Ⅵ ) ions[J]. Journal of
                 abiological processes in chromium(Ⅵ) reduction[J]. International   Environmental Chemical Engineering, 2021, 9(2): 105124.
                 Geology Review, 2000, 42(8): 691-701.         [20]  ZENG H T, ZENG H H, ZHANG H, et al. Efficient adsorption of
            [11]  CREAN D E, COKER V S, LAAN G, et al. Engineering biogenic   Cr(Ⅵ) from aqueous environments by phosphoric acid activated
                 magnetite for sustained Cr(Ⅵ) remediation in flow-through systems   eucalyptus biochar[J]. Journal of Cleaner Production, 2020, 286:
                 [J]. Environmental Science & Technology, 2012, 46(6): 3352.   124964.
            [12]  Science  and  Technology Standards Department of  the State   [21]  LEI Z J (雷增江), YANG  B (杨斌), YANG J H (杨金辉),  et al.
                 Environmental Protection Bureau. Conventional analysis with smoking   Adsorption performance and mechanism of Cr(Ⅵ) by aluminum
                 machine definition and standard conditions: GB/T 1555.5—1995[S].   sludge composite gel spheres[J]. Fine Chemicals (精细化工), 2021,
                 Beijing: China Standard Press (中国标准出版社), 1995.    38(7): 1450-1458.
            [13]  YUAN Z H (袁忠华). Preliminary study on the migration activity of   [22]  SHI Y Y, SHAN R, LU L L, et al. High-efficiency removal of Cr(Ⅵ)
                 copper and zinc  in paddy soil and its control technique[D].   by modified biochar derived from glue residue[J]. Journal of Cleaner
                 Changchun: Jilin Agricultural University (吉林农业大学), 2015.   Production, 2020, 254: 119935.
            [14]  YU Z G (于志刚). Preparation of different crystalline magnetic iron   [23]  KAYA S, OGASAWARA H, NILSSON A. Determination of the surface
                 oxides and their adsorption of Pb(Ⅱ) and Cd(Ⅱ)[D]. Changsha:   electronic structure of Fe 3O 4(Ⅲ) by soft X-ray spectroscopy[J].
                 Hunan University (湖南大学), 2016.                    Catalysis Today, 2014, 240: 184-189.
                                                                                                            3+
                                                                                                      2+
            [15]  FU Y  Z (符义忠). Preparation of oxalate chemical  cementitious   [24]  YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe  and Fe
                 material based on nickel-iron slag and study on adsorption property   ions in oxide materials[J]. Applied Surface  Science, 2008, 254(8):
                 of Cr( Ⅵ )[D]. Kunming: Kunming  University of  Science and   2441-2449.
                 Technology (昆明理工大学), 2020.                    [25]  CAI W Q, WEI J H, LI Z L, et al. Preparation of amino-functionalized
            [16]  SHANG J, GUO Y N, HE D L,  et al. A novel graphene oxide-   magnetic biochar with excellent adsorption performance for Cr(Ⅵ)
                 dicationic ionic liquid composite for Cr(Ⅵ) adsorption from aqueous   by a mild one-step hydrothermal method from peanut hull[J]. Colloids
                 solutions[J]. Journal of Hazardous Materials, 2021, 416(12): 125706.   & Surfaces A Physicochemical &  Engineering Aspects, 2019, 563:
            [17]  DONG F X, YAN L, ZHOU X H, et al. Simultaneous adsorption of   102-111.
                 Cr (Ⅵ) and phenol by biochar-based iron oxide composites in water:   [26]  HU  Y F (胡亚非), XIONG J J (熊建军). Experimental study on
                 Performance, kinetics and mechanism[J]. Journal of  Hazardous   porosity measurement of graphite porous materials[J]. Lubrication
                 Materials, 2021, 416: 125930.                     Engineering (润滑与密封), 2010, 35(10): 99-101.
            [18]  YANG Y, ZHANG Y H, WANG G Y, et al. Adsorption and reduction   [27]  SING K S, EVERETT D  H, HAUL R A W, et  al. Reporting
                 of Cr(Ⅵ) by a novel nanoscale FeS/chitosan/biochar composite from   physisorption data for gas/solid systems with special reference to the
                 aqueous solution[J]. Journal of Environmental Chemical Engineering,   determination of surface area and porosity (Recommendations 1984)
                 2021, 9(4): 105407.                               [J]. Pure & Applied Chemistry, 1985, 57(4): 603-619.


            (上接第 113 页)                                            Applied Catalysis A: General, 2006, 306: 58-67.
            [18]  DO T H, VAN C N, TSAI K A, et al. Superior photoelectrochemical   [26]  AMOUZEGAR Z, NAGHIZADEH R, REZAIE H R, et al. Microwave
                 activity of self-assembled NiWO 4-WO 3 heteroepitaxy[J]. Nano   engineering of  ZnWO 4 nanostructures:  Towards morphologically
                 Energy, 2016, 23: 153-160.                        favorable structures for photocatalytic activity[J]. Ceramics
            [19]  CHEN H H, XIONG X Q, HAO L L, et al. Improved visible light   International, 2015, 41(7): 8352-8359.
                 photocatalytic activity of  WO 3 through CuWO 4 for phenol   [27]  ZHAO  X,  ZHU  Y F. Synergetic degradation of rhodamine B at  a
                 degradation[J]. Applied Surface Science, 2016, 389: 491-495.   porous ZnWO 4 film  electrode by combined electro-oxidation and
            [20]  YOUREY J E, KURTZ J B, BARTLETT B M. Water oxidation on a   photocatalysis[J]. Environmental Science &  Technology, 2006,
                                                         3–
                 CuWO 4-WO 3 composite electrode in the presence of [Fe(CN) 6] :   40(10): 3367-3372.
                 Toward solar Z-scheme water splitting at zero bias[J]. The Journal of   [28]  WEI L J, ZHANG H M, CAO J. Electrospinning of Ag/ZnWO 4/WO 3
                 Physical Chemistry C, 2012, 116(4): 3200-3205.    composite nanofibers with high visible light photocatalytic activity[J].
            [21]  NAM K M,  CHEON E  A, SHIN W J,  et al. Improved   Materials Letters, 2019, 236: 171-174.
                 photoelectrochemical water oxidation by the WO 3/CuWO 4 composite   [29]  LI W, CAO L Y, KONG  X G,  et al.  In situ synthesis and
                 with a  manganese phosphate electrocatalyst[J].  Langmuir, 2015,   photocatalytic performance of WO 3/ZnWO 4 composite powders[J].
                 31(39): 10897-10903.                              RSC Advances, 2016, 6(28): 23783-23789.
            [22]  SALIMI R, ALVANI A A S, MEI  B T,  et al. Ag-functionalized   [30]  LEONARD K C, NAM K M, LEE H C,  et al. ZnWO 4/WO 3
                 CuWO 4/WO 3 nanocomposites for solar water splitting[J]. New   composite for improving photoelectrochemical water oxidation[J].
                 Journal of Chemistry, 2019, 43(5): 2196-2203.     The Journal of Physical  Chemistry  C, 2013, 117(31): 15901-
            [23]  CHEN S J, ZHOU J H, CHEN  X T,  et al. Fabrication of   15910.
                 nanocrystalline ZnWO 4 with different  morphologies and sizes  via   [31]  KEEREETA  Y, THONGTEM  S, THONGTEM  T. Enhanced
                 hydrothermal route[J]. Chemical Physics Letters, 2003,  375(1/2):   photocatalytic degradation of methylene blue by WO 3/ZnWO 4
                 185-190.                                          composites synthesized by  a  combination of microwave-
            [24]  LIN S, CHEN J B, WENG X L, et al. Fabrication and photocatalysis   solvothermal  method and incipient  wetness procedure[J]. Powder
                 of mesoporous ZnWO 4 with PAMAM as  a template[J]. Materials   Technology, 2015, 284: 85-94.
                 Research Bulletin, 2009, 44(5): 1102-1105.    [32]  CUI  Y, PAN L,  CHEN  Y,  et al. Defected ZnWO 4-decorated WO 3
            [25]  FU H  B,  LIN J, ZHANG L  W, et al. Photocatalytic  activities of a   nanorod arrays for efficient photoelectrochemical water splitting[J].
                 novel ZnWO 4 catalyst prepared by a hydrothermal  process[J].   RSC Advances, 2019, 9(10): 5492-5500.
   208   209   210   211   212   213   214   215   216   217   218