Page 131 - 《精细化工》2022年第11期
P. 131
第 11 期 邓晓莉,等: 非晶态硼化物 Ni-Fe-Co-B 的合成及其电催化析氧性能 ·2281·
nanoparticles as highly active bifunctional electrocatalysts for overall 15: 1804212.
water splitting[J]. Advanced Energy Materials, 2017, 7(17): 1700513. [20] HAN H S, CHOI H C, MHIN S W, et al. Advantageous crystalline-
[6] CHEN Z J, KANG Q, CAO G X, et al. Study of cobalt boride- amorphous phase boundary for enhanced electrochemical water
derived electrocatalysts for overall water splitting[J]. International oxidation [J]. Energy Environ Science, 2019, 12: 2443-2454.
Journal of Hydrogen Energy, 2018, 43(12): 6076-6087. [21] OKAMOTO Y, NITTA Y, IMANAKA T, et al. Surface characterisation of
[7] MASA J, SINEV L, MISTRY H, et al. Ultrathin high surface area nickel boride and nickel phosphide catalysts by X-ray photoelectron
nickel boride (Ni xB) nanosheets as highly efficient electrocatalyst for spectroscopy[J]. Journal of the Chemical Society Faraday Transactions,
oxygen evolution[J]. Advanced Energy Materials, 2017, 7(17): 1700381. 1979, 75: 2027-2039.
[8] PARK H, ENCINAS A, SCHEIFERS J P, et al. Boron-dependency of [22] DU Y S, CHENG G Z, LUO W. Colloidal synthesis of urchin-like Fe
molybdenum boride electrocatalysts for the hydrogen evolution doped NiSe 2 for efficient oxygen evolution[J]. Nanoscale, 2017,
reaction[J]. Angewandte Chemie-International Edition, 2017, 56(20): 9(20): 6821-6825.
5575-5578. [23] GUO M R, QAYUM A, DONG S, et al. In situ conversion of metal
[9] LIU G, HE D Y, YAO R, et al. Amorphous NiFeB nanoparticles (Ni, Co or Fe) foams into metal sulfide (Ni 3S 2, Co 9S 8 or FeS) foams
realizing highly active and stable oxygen evolving reaction for water with surface grown N-doped carbon nanotube arrays as efficient
splitting[J]. Nano Research, 2018, 11(3): 1664-1675. superaerophobic electrocatalysts for overall water splitting[J]. Journal
[10] RAMADOSS M, CHEN Y F, HU Y, et al. Three-dimensional porous of Materials Chemistry A, 2020, 8(18): 9239-9247.
nanoarchitecture constructed by ultrathin NiCoBO x nanosheets as a [24] DARBAND G B, ALIOFKHAZRAEI M, SHANMUGAM S. Recent
highly efficient and durable electrocatalyst for oxygen evolution advances in methods and technologies for enhancing bubble
reaction[J]. Electrochimica Acta, 2019, 321: 134666. detachment during electrochemical water splitting[J]. Renewable &
[11] HE T, NSANZIMANA J M V, QI R J, et al. Synthesis of amorphousboride Sustainable Energy Reviews, 2019, 114: 109300.
nanosheets by the chemical reduction of prussion blue analogs for [25] BURKE M S, KAST M G, TROTOCHAUD L, et al. Cobalt-iron
efficient water electrolysis[J]. Journal of Materials Chemistry A, (oxy) hydroxide oxygen evolution electrocatalysts: The role of
2018, 6(46): 23289-23294. structure and composition on activity, stability, and mechanism[J].
[12] CHEN H Y, OUYANG S X, ZHAO M, et al. Synergistic activity of Journal of the American Chemical Society, 2015, 137(10): 3638-3648.
Co and Fe in amorphous Co x-Fe-B catalyst for efficient oxygen [26] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the
evolution reaction[J]. ACS Applied Materials & Interfaces, 2017, oxygen evolution reaction: Recent development and future
9(46): 40333-40343. perspectives[J]. Chemical Society Reviews, 2016, 46(2): 337-365.
[13] GUPTA S, PATELA N, FERNANDES R. Co-Mo-B nanoparticles as [27] KLEMENZ S, SCHUCH J, HAWEL S, et al. Synthesis of a highly
a non-precious and efficient bifunctional electrocatalyst for hydrogen efficient oxygen-evolution electrocatalyst by incorporation of iron into
and oxygen evolution[J]. Electrochimica Acta, 2017, 232: 64-71. nanoscale cobalt borides[J]. ChemSusChem, 2018, 11(18): 3150-3156.
[14] LIU G, HE D Y, YAO R, et al. Amorphous CoFeBO nanoparticles as [28] CHEN Z J, KANG Q, CAO G X, et al. Study of cobalt boride-
highly active electrocatalysts for efficient water oxidation reaction[J]. derived electrocatalysts for overall water splitting[J]. International
International Journal of Hydrogen Energy, 2018, 43(12): 6138-6149. Journal of Hydrogen Energy, 2018, 43(12): 6076-6087.
[15] MASA J, ANDRONESCU C, ANTONI H, et al. Role of boron and [29] XU N, CAO G X, CHEN Z J, et al. Cobalt nickel boride as an active
phosphorus in enhanced electrocatalytic oxygen evolution by nickel electrocatalyst for water splitting[J]. Journal of Materials Chemistry
borides and nickel phosphides[J]. ChemElectroChem, 2019, 6(1): A, 2017, 5(24): 12379-12384.
235-240. [30] CAO G X, XU N, CHEN Z J, et al. Cobalt-tungsten-boron as an
[16] ANANTHARAJ S, NODA S. Amorphous catalysts and electrochemical active electrocatalyst for water electrolysis[J]. Chemistry Select,
water splitting: An untold story of harmony[J]. Small, 2020, 16(2): 2017, 2(21): 6187-6193.
1905779. [31] YANG Y S, ZHUANG L Z, LIN R J, et al. A facile method to
[17] BIESINGER M C, PAYNE B P, LAU L W M, et al. X-ray synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for
photoelectron spectroscopic chemical state quantification of mixed water oxidation[J]. Journal of Power Sources, 2017, 349: 68-74.
nickel metal, oxide and hydroxide systems[J]. Surface and Interface [32] LIU G, GAO X S, WANG K F, et al. Uniformly mesoporous
Analysis, 2009, 41(4): 324-332. NiO/NiFe 2O 4 biphasic nanorods as efficient oxygen evolving catalyst
[18] GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation for water splitting[J]. International Journal of Hydrogen Energy,
of multiplet splitting of Fe 2p XPS spectra and bonding in iron 2016, 41(40): 17976-17986.
compounds[J]. Surface and Interface Analysis, 2004, 36(12): 1564- 1574. [33] DU L, LUO L L, FENG Z X, et al. Nitrogen-doped graphitized
[19] LI Y J, HUANG B L, SUN Y J, et al. Multimetal borides nanochains carbon shell encapsulated NiFe nanoparticles: A highly durable
as efficient electrocatalysts for overall water splitting[J]. Small, 2019, oxygen evolution catalyst[J]. Nano Energy, 2017, 39: 245-252.