Page 131 - 《精细化工》2022年第11期
P. 131

第 11 期                邓晓莉,等:  非晶态硼化物 Ni-Fe-Co-B 的合成及其电催化析氧性能                            ·2281·


                 nanoparticles as highly active bifunctional electrocatalysts for overall   15: 1804212.
                 water splitting[J]. Advanced Energy Materials, 2017, 7(17): 1700513.   [20]  HAN H S, CHOI H C, MHIN S W, et al. Advantageous crystalline-
            [6]   CHEN  Z J, KANG Q, CAO G  X,  et al. Study of cobalt boride-   amorphous phase boundary for enhanced electrochemical water
                 derived electrocatalysts for  overall water splitting[J]. International   oxidation [J]. Energy Environ Science, 2019, 12: 2443-2454.
                 Journal of Hydrogen Energy, 2018, 43(12): 6076-6087.   [21]  OKAMOTO Y, NITTA Y, IMANAKA T, et al. Surface characterisation of
            [7]   MASA J, SINEV L, MISTRY H,  et al. Ultrathin high surface area   nickel boride  and nickel phosphide catalysts by X-ray photoelectron
                 nickel boride (Ni xB) nanosheets as highly efficient electrocatalyst for   spectroscopy[J]. Journal of the Chemical Society Faraday Transactions,
                 oxygen evolution[J]. Advanced Energy Materials, 2017, 7(17): 1700381.   1979, 75: 2027-2039.
            [8]   PARK H, ENCINAS A, SCHEIFERS J P, et al. Boron-dependency of   [22]  DU Y S, CHENG G Z, LUO W. Colloidal synthesis of urchin-like Fe
                 molybdenum boride electrocatalysts for  the hydrogen  evolution   doped NiSe 2  for efficient oxygen evolution[J]. Nanoscale, 2017,
                 reaction[J]. Angewandte Chemie-International Edition, 2017, 56(20):   9(20): 6821-6825.
                 5575-5578.                                    [23]  GUO M R, QAYUM A, DONG S, et al. In situ conversion of metal
            [9]   LIU G, HE D  Y,  YAO  R,  et al. Amorphous NiFeB nanoparticles   (Ni, Co or Fe) foams into metal sulfide (Ni 3S 2, Co 9S 8 or FeS) foams
                 realizing highly active and stable oxygen evolving reaction for water   with surface grown N-doped carbon nanotube arrays as efficient
                 splitting[J]. Nano Research, 2018, 11(3): 1664-1675.   superaerophobic electrocatalysts for overall water splitting[J]. Journal
            [10]  RAMADOSS M, CHEN Y F, HU Y, et al. Three-dimensional porous   of Materials Chemistry A, 2020, 8(18): 9239-9247.
                 nanoarchitecture constructed by  ultrathin NiCoBO x  nanosheets as a   [24]  DARBAND G B, ALIOFKHAZRAEI M, SHANMUGAM S. Recent
                 highly efficient and durable electrocatalyst for oxygen evolution   advances in methods and  technologies for enhancing bubble
                 reaction[J]. Electrochimica Acta, 2019, 321: 134666.   detachment during electrochemical water splitting[J]. Renewable &
            [11]  HE T, NSANZIMANA J M V, QI R J, et al. Synthesis of amorphousboride   Sustainable Energy Reviews, 2019, 114: 109300.
                 nanosheets by the chemical reduction of prussion blue analogs for   [25]  BURKE M S, KAST M G, TROTOCHAUD  L,  et al. Cobalt-iron
                 efficient water electrolysis[J]. Journal of Materials Chemistry A,   (oxy)  hydroxide oxygen evolution electrocatalysts: The role of
                 2018, 6(46): 23289-23294.                         structure and composition on activity, stability, and mechanism[J].
            [12]  CHEN H Y, OUYANG S X, ZHAO M, et al. Synergistic activity of   Journal of the American Chemical Society, 2015, 137(10): 3638-3648.
                 Co and  Fe in amorphous Co x-Fe-B  catalyst for efficient  oxygen   [26]  SUEN N T,  HUNG S F, QUAN Q,  et al. Electrocatalysis for the
                 evolution reaction[J]. ACS Applied Materials & Interfaces, 2017,   oxygen evolution reaction: Recent development and future
                 9(46): 40333-40343.                               perspectives[J]. Chemical Society Reviews, 2016, 46(2): 337-365.
            [13]  GUPTA S, PATELA N, FERNANDES R. Co-Mo-B nanoparticles as   [27]  KLEMENZ S, SCHUCH J, HAWEL S, et al. Synthesis of a highly
                 a non-precious and efficient bifunctional electrocatalyst for hydrogen   efficient  oxygen-evolution electrocatalyst by  incorporation of iron into
                 and oxygen evolution[J]. Electrochimica Acta, 2017, 232: 64-71.   nanoscale cobalt borides[J]. ChemSusChem, 2018, 11(18): 3150-3156.
            [14]  LIU G, HE D Y, YAO R, et al. Amorphous CoFeBO nanoparticles as   [28]  CHEN  Z J, KANG Q, CAO G  X,  et al. Study of cobalt boride-
                 highly active electrocatalysts for efficient water oxidation reaction[J].   derived electrocatalysts for  overall water splitting[J]. International
                 International Journal of Hydrogen Energy, 2018, 43(12): 6138-6149.   Journal of Hydrogen Energy, 2018, 43(12): 6076-6087.
            [15]  MASA J, ANDRONESCU C, ANTONI H, et al. Role of boron and   [29]  XU N, CAO G X, CHEN Z J, et al. Cobalt nickel boride as an active
                 phosphorus in enhanced electrocatalytic oxygen evolution by nickel   electrocatalyst for water splitting[J]. Journal of Materials Chemistry
                 borides and nickel phosphides[J]. ChemElectroChem, 2019, 6(1):   A, 2017, 5(24): 12379-12384.
                 235-240.                                      [30]  CAO G  X, XU N,  CHEN Z  J,  et al. Cobalt-tungsten-boron as an
            [16]  ANANTHARAJ S, NODA S. Amorphous catalysts and electrochemical   active electrocatalyst for water electrolysis[J]. Chemistry Select,
                 water splitting: An untold story of harmony[J]. Small, 2020, 16(2):   2017, 2(21): 6187-6193.
                 1905779.                                      [31]  YANG Y S, ZHUANG L  Z, LIN R J,  et al. A facile method to
            [17]  BIESINGER M  C, PAYNE B P, LAU L W M,  et al. X-ray   synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for
                 photoelectron spectroscopic chemical  state quantification of mixed   water oxidation[J]. Journal of Power Sources, 2017, 349: 68-74.
                 nickel metal, oxide and hydroxide systems[J]. Surface and Interface   [32]  LIU  G, GAO X S,  WANG K  F,  et al. Uniformly  mesoporous
                 Analysis, 2009, 41(4): 324-332.                   NiO/NiFe 2O 4 biphasic nanorods as efficient oxygen evolving catalyst
            [18]  GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation   for water splitting[J]. International Journal of Hydrogen Energy,
                 of multiplet splitting of  Fe 2p XPS spectra and bonding in iron   2016, 41(40): 17976-17986.
                 compounds[J]. Surface and Interface Analysis, 2004, 36(12): 1564- 1574.   [33]  DU  L, LUO  L L, FENG Z X,  et al. Nitrogen-doped graphitized
            [19]  LI Y J, HUANG B L, SUN Y J, et al. Multimetal borides nanochains   carbon shell encapsulated NiFe  nanoparticles: A highly durable
                 as efficient electrocatalysts for overall water splitting[J]. Small, 2019,   oxygen evolution catalyst[J]. Nano Energy, 2017, 39: 245-252.
   126   127   128   129   130   131   132   133   134   135   136