Page 177 - 《精细化工》2022年第11期
P. 177
第 11 期 龙盖琼,等: 3D 打印超拉伸凝胶电解质的制备及在柔性铝空气电池中的应用 ·2327·
电解质相比,断裂伸长率提升了 83.7%、离子电导 on PVA-alkaline solid polymer electrolyte for aluminum-air battery
率提升了 33.3%。 applications[J]. Journal of the Electrochemical Society, 2018, 165:
A2483-A2492.
(2)超拉伸凝胶电解质中 BC 含量能够影响电 [11] WU L J, HUANG S Q, ZHENG J, et al. Synthesis and characterization
解质的离子电导率和拉伸性能,当 m(BC)∶m(PVA)= of biomass lignin-based PVA super-absorbent hydrogel[J]. International
Journal of Biological Macromolecules, 2019, 140(C): 538-545.
0.0048 ∶ 1 时 ,超拉 伸凝 胶电解 质拉 伸强度 达
[12] THONG C C, TEO D, NG C, et al. Application of polyvinyl alcohol
0.90 MPa、断裂伸长率达 961%、离子电导率达 (PVA) in cement-based composite materials: A review of its
–2
11.00×10 S/cm,综合性能优良。超拉伸凝胶电解 engineering properties and microstructure behavior[J]. Construction
and Building Materials, 2016, 107: 172-180.
质具有较好的应用前景,如应用于超级电容器和柔
[13] WANG Z H, LEE Y H, KIM S, et al. Why cellulose-based
性电池领域。 electrochemical energy storage devices?[J]. Advanced Materials,
(3)将 3D 打印制备的凝胶电解质应用于柔性 2021, 33(28): e2000892.
[14] ZHANG Y N, CHEN Y J, LI X, et al. Bacterial cellulose hydrogel: A
2
铝空气电池,电池的电流密度为 46.8 mA/cm 时对
promising electrolyte for flexible zinc-air batteries[J]. Journal of
2
应的功率密度为 21.0 mW/cm ,电流密度为 20 mA/cm 2 Power Sources, 2021, 482: 228963.
时电 池能够恒流 放电 90 min ,阳极比 容量 达 [15] ZHAO N N, WU F, XING Y, et al. Flexible hydrogel electrolyte with
superior mechanical properties based on poly(vinyl alcohol) and
1124 mA·h/g,能够为可穿戴电子设备稳定供电。 bacterial cellulose for the solid-state zinc-air batteries[J]. ACS
Applied Materials & Interfaces, 2019, 11(17): 15537-15542.
参考文献: [16] AREIR M, XU Y M, HARRISON D, et al. Development of 3D
[1] ZHU M J (朱明骏), YUAN Z S (袁振善), SANG L (桑林), et al. printing technology for the manufacture of flexible electric double-
Research progresses of metal/air batteries[J]. Chinese Journal of layer capacitors[J]. Advanced Manufacturing Processes, 2018, 33(8):
Power Sources (电源技术), 2012, 36(12): 1953-1955. 905-911.
[2] BUCKINGHAM R, ASSET T, ATANASSOV P. Aluminum-air [17] LUO J W, ZHONG W B, ZOU Y B, et al. Preparation of morphology-
batteries: A review of alloys, electrolytes and design[J]. Journal of controllable polyaniline and polyanilinegraphene hydrogels for high
performance binder-free supercapacitor electrodes[J]. Journal of
Power Sources, 2021, 498: 229762.
Power Sources, 2016, 319: 73-81.
[3] PENG G S, HUANG J, GU Y C, et al. Self-corrosion, electrochemical
[18] WALLE M, ZENG K, ZHANG M Y, et al. Soft template synthesis of
and discharge behavior of commercial purity Al anode via Mn
acetylene blackmanganese dioxide nanosheets composites as efficient
modification in Al-air battery[J]. Rare Metals, 2021, 40: 3501-3511.
sulfur hosts for lithium-sulfur batteries[J]. Journal of Materials
[4] ZHANG Z, ZUO C C, LIU Z H, et al. All-solid-state Al-air batteries
Science, 2018, 53: 14608-14618.
with polymer alkaline gel electrolyte[J]. Journal of Power Sources,
[19] FAN L D, WANG M Y, ZHANG Z, et al. Preparation and
2014, 251: 470-475.
characterization of PVA alkaline solid polymer electrolyte with
[5] JIANG H, YU S, LI W Z, et al. Inhibition effect and mechanism of
addition of bamboo charcoal[J]. Materials, 2018, 11(5): 679.
inorganic-organic hybrid additives on three-dimension porous
[20] KAWAI T, SHANJANI Y, FAZELI S, et al. Customized, degradable,
aluminum foam in alkaline Al-air battery[J]. Journal of Power Sources,
functionally graded scaffold for potential treatment of early stage
2020, 448(C): 227460.
osteonecrosis of the femoral head[J]. Journal of Orthopaedic Research,
[6] HUI B, ZHANG Y, YE L. Preparation of PVA hydrogel beads and
2018, 36(3): 1002-1011.
adsorption mechanism for advanced phosphate removal[J]. Chemical
[21] HU O D, LU J, CHEN G Q, et al. An antifreezing, tough,
Engineering Journal, 2014, 235: 207-214.
rehydratable, and thermoplastic poly(vinyl alcohol)/sodium alginate/
[7] WANG S H (王思恒), YANG X X (杨欣欣), HUANG X J (黄旭娟),
poly(ethylene glycol) organohydrogel electrolyte for flexible
et al. Preparation of anti-freezing hydrogels and its application in
supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2021,
flexible electronics[J]. Fine Chemicals (精细化工), 2021, 38(6):
9(29): 9833-9845.
1081-1091. [22] SUN P F, CHEN J T, HUANG Y L, et al. High-strength agarose gel
[8] WU X (吴勰), XUE Z M (薛照明), ZHOU L (周莉), et al. Preparation
electrolyte enables long-endurance wearable Al-air batteries with
and properties of blend modified PEO/TPU/PVDF-HFP-based polymer greatly suppressed self-corrosion[J]. Energy Storage Materials, 2021,
electrolyte[J]. Fine Chemicals (精细化工), 2021, 38(1): 155-161. 34: 427-435.
[9] SANTOS F, TAFUR J, ABAD J, et al. Structural modifications and [23] QIU P D (邱平达), CAI K D (蔡克迪), WANG C (王诚), et al.
ionic transport of PVA-KOH hydrogels applied in Zn/air batteries[J]. Investigation of composite catalyst of cathode for thin film aluminum
Journal of Electroanalytical Chemistry, 2019, 850(C): 113380. air battery[J]. Electronic Components and Materials (电子元件与材
[10] MOKHTAR M, MAJLAN E, MAJLAN A, et al. Effect of ZnO filler 料), 2015, 34(5): 75-78.