Page 177 - 《精细化工》2022年第11期
P. 177

第 11 期            龙盖琼,等: 3D 打印超拉伸凝胶电解质的制备及在柔性铝空气电池中的应用                                  ·2327·


            电解质相比,断裂伸长率提升了 83.7%、离子电导                              on PVA-alkaline solid polymer electrolyte for aluminum-air battery
            率提升了 33.3%。                                            applications[J]. Journal of the Electrochemical Society, 2018, 165:
                                                                   A2483-A2492.
                (2)超拉伸凝胶电解质中 BC 含量能够影响电                        [11]  WU L J, HUANG S Q, ZHENG J, et al. Synthesis and characterization
            解质的离子电导率和拉伸性能,当 m(BC)∶m(PVA)=                          of biomass lignin-based PVA super-absorbent hydrogel[J]. International
                                                                   Journal of Biological Macromolecules, 2019, 140(C): 538-545.
            0.0048 ∶ 1 时 ,超拉 伸凝 胶电解 质拉 伸强度 达
                                                               [12]  THONG C C, TEO D, NG C, et al. Application of polyvinyl alcohol
            0.90 MPa、断裂伸长率达 961%、离子电导率达                            (PVA) in cement-based composite  materials: A review of its
                    –2
            11.00×10  S/cm,综合性能优良。超拉伸凝胶电解                          engineering properties and microstructure behavior[J]. Construction
                                                                   and Building Materials, 2016, 107: 172-180.
            质具有较好的应用前景,如应用于超级电容器和柔
                                                               [13]  WANG Z H,  LEE Y  H, KIM S,  et al. Why cellulose-based
            性电池领域。                                                 electrochemical  energy storage devices?[J]. Advanced Materials,
                (3)将 3D 打印制备的凝胶电解质应用于柔性                            2021, 33(28): e2000892.
                                                               [14]  ZHANG Y N, CHEN Y J, LI X, et al. Bacterial cellulose hydrogel: A
                                                     2
            铝空气电池,电池的电流密度为 46.8 mA/cm 时对
                                                                   promising electrolyte for flexible zinc-air batteries[J]. Journal of
                                     2
            应的功率密度为 21.0 mW/cm ,电流密度为 20 mA/cm            2        Power Sources, 2021, 482: 228963.
            时电 池能够恒流 放电 90 min ,阳极比 容量 达                       [15]  ZHAO N N, WU F, XING Y, et al. Flexible hydrogel electrolyte with
                                                                   superior mechanical properties based on poly(vinyl alcohol) and
            1124 mA·h/g,能够为可穿戴电子设备稳定供电。                            bacterial cellulose for the solid-state zinc-air batteries[J]. ACS
                                                                   Applied Materials & Interfaces, 2019, 11(17): 15537-15542.
            参考文献:                                              [16]  AREIR M,  XU Y M,  HARRISON  D,  et al. Development of 3D
            [1]   ZHU M J (朱明骏), YUAN Z S (袁振善), SANG L (桑林), et al.   printing technology for the manufacture of flexible electric double-
                 Research progresses of metal/air batteries[J]. Chinese Journal of   layer capacitors[J]. Advanced Manufacturing Processes, 2018, 33(8):
                 Power Sources (电源技术), 2012, 36(12): 1953-1955.    905-911.
            [2]   BUCKINGHAM R, ASSET T,  ATANASSOV  P. Aluminum-air   [17]  LUO J W, ZHONG W B, ZOU Y B, et al. Preparation of morphology-
                 batteries: A review of alloys, electrolytes and design[J]. Journal of   controllable polyaniline and polyanilinegraphene hydrogels for high
                                                                   performance binder-free supercapacitor electrodes[J]. Journal of
                 Power Sources, 2021, 498: 229762.
                                                                   Power Sources, 2016, 319: 73-81.
            [3]   PENG G S, HUANG J, GU Y C, et al. Self-corrosion, electrochemical
                                                               [18]  WALLE M, ZENG K, ZHANG M Y, et al. Soft template synthesis of
                 and discharge behavior of commercial purity Al anode  via Mn
                                                                   acetylene blackmanganese dioxide nanosheets composites as efficient
                 modification in Al-air battery[J]. Rare Metals, 2021, 40: 3501-3511.
                                                                   sulfur  hosts for lithium-sulfur batteries[J]. Journal of  Materials
            [4]   ZHANG Z, ZUO C C, LIU Z H, et al. All-solid-state Al-air batteries
                                                                   Science, 2018, 53: 14608-14618.
                 with polymer alkaline gel electrolyte[J]. Journal of Power Sources,
                                                               [19]  FAN L D, WANG M  Y,  ZHANG  Z,  et al. Preparation and
                 2014, 251: 470-475.
                                                                   characterization of PVA alkaline solid polymer  electrolyte with
            [5]   JIANG H, YU S, LI W Z, et al. Inhibition effect and mechanism of
                                                                   addition of bamboo charcoal[J]. Materials, 2018, 11(5): 679.
                 inorganic-organic hybrid additives on three-dimension porous
                                                               [20]  KAWAI T, SHANJANI Y, FAZELI S, et al. Customized, degradable,
                 aluminum foam in alkaline Al-air battery[J]. Journal of Power Sources,
                                                                   functionally graded scaffold for  potential treatment of early stage
                 2020, 448(C): 227460.
                                                                   osteonecrosis of the femoral head[J]. Journal of Orthopaedic Research,
            [6]   HUI B, ZHANG Y, YE L. Preparation of PVA hydrogel beads and
                                                                   2018, 36(3): 1002-1011.
                 adsorption mechanism for advanced phosphate removal[J]. Chemical
                                                               [21]  HU O D, LU J, CHEN G Q,  et al. An antifreezing, tough,
                 Engineering Journal, 2014, 235: 207-214.
                                                                   rehydratable, and thermoplastic poly(vinyl alcohol)/sodium alginate/
            [7]   WANG S H (王思恒), YANG X X (杨欣欣), HUANG X J (黄旭娟),
                                                                   poly(ethylene glycol) organohydrogel electrolyte for flexible
                 et al. Preparation  of anti-freezing hydrogels and its application in
                                                                   supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2021,
                 flexible electronics[J]. Fine Chemicals (精细化工), 2021, 38(6):
                                                                   9(29): 9833-9845.
                 1081-1091.                                    [22]  SUN P F, CHEN J T, HUANG Y L, et al. High-strength agarose gel
            [8]  WU  X  (吴勰), XUE Z M (薛照明), ZHOU L (周莉), et al. Preparation
                                                                   electrolyte enables long-endurance wearable Al-air batteries with
                 and properties of blend modified PEO/TPU/PVDF-HFP-based polymer   greatly suppressed self-corrosion[J]. Energy Storage Materials, 2021,
                 electrolyte[J]. Fine Chemicals (精细化工), 2021, 38(1): 155-161.   34: 427-435.
            [9]   SANTOS F, TAFUR J, ABAD J, et al. Structural modifications and   [23]  QIU P D (邱平达), CAI K D (蔡克迪), WANG C (王诚), et al.
                 ionic transport of PVA-KOH hydrogels applied in Zn/air batteries[J].   Investigation of composite catalyst of cathode for thin film aluminum
                 Journal of Electroanalytical Chemistry, 2019, 850(C): 113380.   air battery[J]. Electronic Components and Materials (电子元件与材
            [10]  MOKHTAR M, MAJLAN E, MAJLAN A, et al. Effect of ZnO filler     料), 2015, 34(5): 75-78.
   172   173   174   175   176   177   178   179   180   181   182