Page 218 - 《精细化工》2022年第12期
P. 218
·2584· 精细化工 FINE CHEMICALS 第 39 卷
参考文献: repairable and recyclable fiber-reinforced thermoset composites[J].
Materials Horizons, 2016, 3(3): 241-247.
[1] CHEN P (陈平), LIU S P (刘胜平), WANG D Z (王德中). Epoxy [12] LI B, ZHU G, HAO Y, et al. An investigation on the performance of
resin and its applications[M]. Beijing: Chemical Industry Press(化学 epoxy vitrimers based on disulfide bond[J]. Journal of Applied
工业出版社), 2011. Polymer Science, 2021, 139(5): 51589-51599.
[2] LIU J K (刘敬楷), DAI J Y (代金月), ZHAO W W (赵伟伟), et al. [13] ZHAO S, ABU-OMAR M M. Recyclable and malleable epoxy
Synthesis of sustainable thermosetting resins: High performance and thermoset bearing aromatic imine bonds[J]. Macromolecules, 2018,
functionalization[J]. Acta Polymerica Sinica (高分子学报), 2022, 51(23): 9816-9824.
53(2): 107-119. [14] LIU T, ZHANG M, GUO X, et al. Mild chemical recycling of
[3] TAN Y S (谭永松), ZHU J R (朱俊荣), CHEN K L (陈坤林), et al. aerospace fiber/epoxy composite wastes and utilization of the decomposed
Preparation and properties of graphene composite epoxy resin resin[J]. Polymer Degradation and Stability, 2017, 139: 20-27.
coatings[J]. Fine Chemicals (精细化工), 2021, 38(1): 78-82. [15] GUO W, CHEN S, CHENG J, et al. Synthesis of renewable and
[4] LIU J K, WANG S P, PENG Y Y, et al. Advances in sustainable self-curable thermosetting hyperbranched polymers by a click
thermosetting resins: From renewable feedstock to high performance reaction[J]. Progress in Organic Coatings, 2019, 134: 189-196.
and recyclability[J]. Progress in Polymer Science, 2021, 113:1-49. [16] MA S Q, WEI J, JIA Z, et al. Readily recyclable, high-performance
[5] WANG B B, MA S Q, YAN S F, et al. Readily recyclable carbon thermosetting materials based on a lignin-derived spiro diacetal
fiber reinforced composites based on degradable thermosets: A trigger[J]. Journal of Materials Chemistry A, 2019, 7(3): 1233-1243.
review[J]. Green Chemistry, 2019, 21(21): 5781-5796. [17] WANG B B, MA S Q, LI Q, et al. Facile synthesis of "digestible",
[6] AAONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica- rigid-and-flexible, bio-based building block for high-performance
like malleable materials from permanent organic networks[J]. Science, degradable thermosetting plastics[J]. Green Chemistry, 2020, 22(4):
2011, 334(6058): 965-968. 1275-1290.
[7] BRUTMAN J P, DELGADO P A, HILLMYER M A. Polylactide [18] FENG H Y, JIN D D, WANG S P, et al. Design of controllable
vitrimers[J]. ACS Macro Letters, 2014, 3(7): 607-610. degradable epoxy resin: High performance and feasible upcycling[J].
[8] CHEN M, ZHOU L, WU Y, et al. Rapid stress relaxation and Polymer Advance Technology, 2022, 33(5): 1665-1676.
moderate temperature of malleability enabled by the synergy of [19] HU J Y, WANG C H, DAI J Y, et al. Epoxy resin with excellent
disulfide metathesis and carboxylate transesterification in epoxy ultraviolet resistance and mechanical properties derived from
vitrimers[J]. ACS Macro Letters, 2019, 8(3): 255-260. renewable camphoric acid[J]. Polymer Advance Technology, 2021,
[9] WANG S P, TENG N, DAI J Y, et al. Taking advantages of 32(9): 3701-3713.
intramolecular hydrogen bonding to prepare mechanically robust and [20] HU Q L (胡侨乐), DUAN Y F (端玉芳), LIU Z (刘志), et al. Current
catalyst-free vitrimer[J]. Polymer, 2020, 210: 123004. status of carbon fiber reinforced polymer composites recycling and
[10] LI Y, LIU T, ZHANG S, et al. Catalyst-free vitrimer elastomer based re-manufacturing[J]. Acta Materiae Compositae Sinica (复合材料学
on dimer acid: Robust mechanical performance, adaptivity and 报), 2022, 39(1): 64-76.
hydrothermal recyclability[J]. Green Chemistry, 2020, 22(3): [21] XUE Q, WU Q, YAO Y, et al. A bio-safe cyclophosphazene
870-881. derivative flame retardant for polylactic acid composites: Flammability
[11] LUZURIAGA A D, MARTIN R, MARKAIDE N, et al. Epoxy resin and cytotoxicity[J]. Polymer Advance Technology, 2021, 32(1):
with exchangeable disulfide crosslinks to obtain reprocessable, 368-378.
(上接第 2576 页) gelatin adhesive[J]. Fine Chemicals (精细化工), 2020, 37(3): 615-621.
[15] QIANG T T (强涛涛), ZHANG G G (张国国), LUO M (罗敏), et al.
[7] LIU K (刘宽), LUO P Y (罗平亚), DING X H (丁小惠), et al. Preparation and characterization of first generation carboxyl terminated
Research and application of instant low damage hydrophobically hyperbranched polymers[J]. Fine Chemicals (精细化工), 2012,
associating polymer fracturing fluid[J]. Oilfield Chemistry (油田化 29(7): 692-696.
学), 2017, 34(3): 433-437. [16] QIANG T T (强涛涛). Preparation of hyperbranched polymer and its
[8] LIU T Y (刘通义), TANG T (唐瑭), CHEN G J (陈光杰), et al. effect on hygienic properties of microfiber synthetic leather[D].
Preparation and evaluation of a hydrophobic cationic guar gum for Xiʹan: Shaanxi University of Science & Technology (陕西科技大
fracturing fluid[J]. Drilling Fluid and Completion Fluid (钻井液与完 学), 2010.
井液), 2018, 35(1): 114-118. [17] CHEN F (陈馥), LIN W J (林文君), LI L S (李丽书), et al.
[9] WANG X (王熙), YANG Y Z (杨永钊), JIANG E L (蒋尔梁), et al. Application of fiber-assisted fracturing fluid in Jilin oilfield[J].
Research progress of fiber materials for fracturing fluid [J]. Journal Oilfield Chemistry (油田化学), 2010, 27(2): 128-131, 136.
of Southwest Petroleum University (Science & Technology Edition) [18] PENG X C (彭晓春), PENG X H (彭晓宏), ZHAO J Q (赵建青),
(西南石油大学学报: 自然科学版), 2010, 32(3): 141-144. et al. Review of hyperbranched polyamides research in synthesis
[10] ZHANG C H (张传海), LI H Y (李化毅), ZHANG M G (张明革), methodology[J]. Guangdong Chemical Industry (广东化工), 2006,
et al. Research progress on preparation methods of hyperbranched 33(1): 5-7.
polymers[J]. Polymer Bulletin (高分子通报), 2008, (2): 16-24. [19] QU Z X (曲忠先), JIAO J (焦剑),WANG Y J (王轶洁), et al. The
[11] CHEN W J (陈文娟), ZHANG J (张健), ZHU Y J (朱玥珺), et al. prospect of hyperbranched polymer[J]. Materials Review (材料导
Synthesis and properties of hyperbranched polymers for oil 报), 2006, 20(3): 25-28.
displacement[J]. Fine Chemicals (精细化工), 2018, 35(10): 1751-1757. [20] LAI N J, ZHANG Y, XU Q, et al. A Water-soluble hyperbranched
[12] XU J Q (徐骏祺), HUANG T (黄通), LYU X (吕鑫), et al. Synthesis copolymer based on a dendritic structure for low-to-moderate
and characterization of water soluble high shear resistant permeability reservoirs[J]. RSC Advances, 2016, 6(39): 32586-
hyperbranched polyacrylamide[J]. Journal of Shanghai Institute of 32597.
Technology (Natural Science) (上海应用技术学院学报: 自然科学 [21] JIA Z F (贾振福), LI Z Y (李早元), ZHONG J X (钟静霞), et al.
版), 2014, 14(1): 277-282. Inorganic salts and their concentrations: Effects on the viscosity of
[13] CHEN Y Y, WANG N, TONG G S, et al. Synthesis of multiarm star hydrophobically associating polymer solution[J]. Drilling Fluid &
polymer based on hyperbranched polyester core and poly(ε- Completion Fluid (钻井液与完井液), 2007, 24(1): 55-57, 101.
caprolactone) arms and its application in UV-curable coating[J]. ACS [22] XIONG L J (熊利军), WANG L (王犁), WU Y (吴洋), et al.
Omega, 2018, 3(10): 13928-13934. Preparation and performance evaluation of high temperature resistant
[14] WANG X C (王学川), ZHU J B (朱镜柏), ZHANG H J (张慧洁), clean fracturing fluid[J]. Fine Chemicals (精细化工), 2022, 39(1):
et al. Preparation and properties of hyperbranched polymer modified 204-211.