Page 218 - 《精细化工》2022年第12期
P. 218

·2584·                            精细化工   FINE CHEMICALS                                 第 39 卷

            参考文献:                                                  repairable and recyclable fiber-reinforced thermoset composites[J].
                                                                   Materials Horizons, 2016, 3(3): 241-247.
            [1]   CHEN P (陈平), LIU S P (刘胜平), WANG D Z (王德中). Epoxy   [12]  LI B, ZHU G, HAO Y, et al. An investigation on the performance of
                 resin and its applications[M]. Beijing: Chemical Industry Press(化学  epoxy vitrimers based on disulfide  bond[J]. Journal of Applied
                 工业出版社), 2011.                                     Polymer Science, 2021, 139(5): 51589-51599.
            [2]   LIU J K (刘敬楷), DAI J Y (代金月), ZHAO W W (赵伟伟), et al.   [13]  ZHAO S, ABU-OMAR M M. Recyclable and  malleable epoxy
                 Synthesis of sustainable thermosetting resins: High performance and   thermoset bearing aromatic imine bonds[J]. Macromolecules, 2018,
                 functionalization[J]. Acta Polymerica  Sinica (高分子学报), 2022,   51(23): 9816-9824.
                 53(2): 107-119.                               [14]  LIU T, ZHANG  M, GUO X,  et al. Mild chemical recycling of
            [3]   TAN Y S (谭永松), ZHU J R (朱俊荣), CHEN K L (陈坤林), et al.   aerospace fiber/epoxy composite wastes and utilization of the decomposed
                 Preparation and properties of graphene composite epoxy resin   resin[J]. Polymer Degradation and Stability, 2017, 139: 20-27.
                 coatings[J]. Fine Chemicals (精细化工), 2021, 38(1): 78-82.   [15]  GUO  W, CHEN S, CHENG J,  et al.  Synthesis of renewable and
            [4]   LIU J K,  WANG  S P, PENG Y Y,  et al. Advances in sustainable   self-curable thermosetting  hyperbranched polymers by a click
                 thermosetting resins: From renewable feedstock to high performance   reaction[J]. Progress in Organic Coatings, 2019, 134: 189-196.
                 and recyclability[J]. Progress in Polymer Science, 2021, 113:1-49.   [16]  MA S Q, WEI J, JIA Z, et al. Readily recyclable, high-performance
            [5]   WANG B B,  MA  S Q, YAN S F,  et al. Readily recyclable carbon   thermosetting materials  based  on a lignin-derived spiro diacetal
                 fiber reinforced composites  based on degradable thermosets: A   trigger[J]. Journal of Materials Chemistry A, 2019, 7(3): 1233-1243.
                 review[J]. Green Chemistry, 2019, 21(21): 5781-5796.   [17]  WANG B B, MA S Q, LI Q, et al. Facile synthesis of "digestible",
            [6]   AAONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-   rigid-and-flexible, bio-based  building block  for high-performance
                 like malleable materials from permanent organic networks[J]. Science,   degradable thermosetting plastics[J]. Green Chemistry, 2020, 22(4):
                 2011, 334(6058): 965-968.                         1275-1290.
            [7]   BRUTMAN J P,  DELGADO P A, HILLMYER M  A. Polylactide   [18]  FENG H Y, JIN D D, WANG S P,  et al. Design of  controllable
                 vitrimers[J]. ACS Macro Letters, 2014, 3(7): 607-610.   degradable epoxy resin: High performance and feasible upcycling[J].
            [8]   CHEN M,  ZHOU L, WU Y,  et al.  Rapid stress relaxation and   Polymer Advance Technology, 2022, 33(5): 1665-1676.
                 moderate temperature of malleability enabled by the synergy of   [19]  HU J  Y,  WANG C H, DAI J Y,  et al. Epoxy resin with excellent
                 disulfide metathesis and carboxylate transesterification in epoxy   ultraviolet resistance and  mechanical properties derived from
                 vitrimers[J]. ACS Macro Letters, 2019, 8(3): 255-260.   renewable  camphoric acid[J]. Polymer Advance  Technology, 2021,
            [9]   WANG S P,  TENG N,  DAI J Y,  et al. Taking advantages of   32(9): 3701-3713.
                 intramolecular hydrogen bonding to prepare mechanically robust and   [20]  HU Q L (胡侨乐), DUAN Y F (端玉芳), LIU Z (刘志), et al. Current
                 catalyst-free vitrimer[J]. Polymer, 2020, 210: 123004.   status of carbon fiber reinforced polymer composites recycling and
            [10]  LI Y, LIU T, ZHANG S, et al. Catalyst-free vitrimer elastomer based   re-manufacturing[J]. Acta Materiae Compositae Sinica (复合材料学
                 on dimer acid: Robust mechanical  performance,  adaptivity and   报), 2022, 39(1): 64-76.
                 hydrothermal recyclability[J]. Green Chemistry, 2020, 22(3):   [21]  XUE Q, WU Q,  YAO Y,  et al. A bio-safe cyclophosphazene
                 870-881.                                          derivative flame retardant for polylactic acid composites: Flammability
            [11]  LUZURIAGA A D, MARTIN R, MARKAIDE N, et al. Epoxy resin   and cytotoxicity[J]. Polymer  Advance  Technology, 2021, 32(1):
                 with exchangeable disulfide crosslinks to obtain reprocessable,   368-378.




            (上接第 2576 页)                                           gelatin adhesive[J]. Fine Chemicals (精细化工), 2020, 37(3): 615-621.
                                                               [15]  QIANG T T (强涛涛), ZHANG G G (张国国), LUO M (罗敏), et al.
            [7]   LIU K (刘宽), LUO P  Y (罗平亚),  DING X H (丁小惠),  et al.   Preparation and characterization of first generation carboxyl terminated
                 Research and application of  instant low damage hydrophobically   hyperbranched polymers[J]. Fine Chemicals (精细化工), 2012,
                 associating polymer fracturing fluid[J]. Oilfield Chemistry (油田化  29(7): 692-696.
                 学), 2017, 34(3): 433-437.                     [16]  QIANG T T (强涛涛). Preparation of hyperbranched polymer and its
            [8]   LIU  T Y (刘通义), TANG T  (唐瑭), CHEN G J (陈光杰),  et al.   effect on  hygienic properties  of microfiber synthetic leather[D].
                 Preparation and evaluation of a hydrophobic cationic guar gum for   Xiʹan: Shaanxi University of Science & Technology (陕西科技大
                 fracturing fluid[J]. Drilling Fluid and Completion Fluid (钻井液与完  学), 2010.
                 井液), 2018, 35(1): 114-118.                    [17]  CHEN F (陈馥), LIN W J (林文君), LI L S (李丽书),  et al.
            [9]   WANG X (王熙), YANG Y Z (杨永钊), JIANG E L (蒋尔梁), et al.   Application of fiber-assisted fracturing fluid in Jilin oilfield[J].
                 Research progress of fiber materials for fracturing fluid [J]. Journal   Oilfield Chemistry (油田化学), 2010, 27(2): 128-131, 136.
                 of Southwest Petroleum University (Science & Technology Edition)   [18]  PENG X C (彭晓春), PENG X H (彭晓宏), ZHAO J Q (赵建青),
                 (西南石油大学学报:  自然科学版), 2010, 32(3): 141-144.         et al. Review of hyperbranched polyamides research in synthesis
            [10]  ZHANG C H (张传海), LI H Y (李化毅), ZHANG M G (张明革),   methodology[J]. Guangdong Chemical Industry (广东化工), 2006,
                 et al. Research progress on preparation methods of hyperbranched   33(1): 5-7.
                 polymers[J]. Polymer Bulletin (高分子通报), 2008, (2): 16-24.   [19]  QU Z X (曲忠先), JIAO J (焦剑),WANG Y J (王轶洁), et al. The
            [11]  CHEN W J (陈文娟), ZHANG J (张健), ZHU Y J (朱玥珺), et al.   prospect of hyperbranched polymer[J]. Materials Review (材料导
                 Synthesis and properties of hyperbranched polymers for oil   报), 2006, 20(3): 25-28.
                 displacement[J]. Fine Chemicals (精细化工), 2018, 35(10): 1751-1757.   [20]  LAI N J, ZHANG Y, XU Q, et al. A Water-soluble hyperbranched
            [12]  XU J Q (徐骏祺), HUANG T (黄通), LYU X (吕鑫), et al. Synthesis   copolymer based on a dendritic structure for low-to-moderate
                 and characterization of water soluble high shear resistant   permeability reservoirs[J]. RSC Advances, 2016, 6(39): 32586-
                 hyperbranched  polyacrylamide[J]. Journal of  Shanghai Institute of   32597.
                 Technology (Natural Science) (上海应用技术学院学报:  自然科学  [21]  JIA Z F (贾振福), LI Z Y (李早元), ZHONG J X (钟静霞), et al.
                 版), 2014, 14(1): 277-282.                         Inorganic salts and their concentrations: Effects on the viscosity of
            [13]  CHEN Y Y, WANG N, TONG G S, et al. Synthesis of multiarm star   hydrophobically associating polymer  solution[J]. Drilling Fluid &
                 polymer based on hyperbranched polyester core and poly(ε-   Completion Fluid (钻井液与完井液), 2007, 24(1): 55-57, 101.
                 caprolactone) arms and its application in UV-curable coating[J]. ACS   [22]  XIONG  L J (熊利军),  WANG L (王犁), WU Y (吴洋),  et al.
                 Omega, 2018, 3(10): 13928-13934.                  Preparation and performance evaluation of high temperature resistant
            [14]  WANG X C (王学川), ZHU J B (朱镜柏), ZHANG H J (张慧洁),   clean fracturing fluid[J]. Fine Chemicals (精细化工), 2022, 39(1):
                 et al. Preparation and properties of hyperbranched polymer modified   204-211.
   213   214   215   216   217   218   219   220   221   222   223