Page 184 - 《精细化工》2022年第2期
P. 184

·388·                             精细化工   FINE CHEMICALS                                 第 39 卷

            3   结论                                                 embedded inside N-doped carbon microcages as high-performances
                                                                   lithium and sodium ion battery anodes[J]. Journal of Materials
                                                                   Chemistry A, 2017, 5: 8334-8342.
                 通过简单的水热法制备了具有清晰异质结结构                          [12]  CAI Q F, LI Y Y, WANG L, et al. Freestanding hollow double-shell
            的有序 SnSe 0.5 S 0.5 @N-C 复合材料。N-C 层增加了                  Se@CN x nanobelts as large-capacity and high-rate cathodes for Li-Se
                          +
            电导率促使 Na 快速扩散,并在充放电过程中缓解                               batteries[J]. Nano Energy, 2017, 32: 1-9.
                                                               [13]  DANG  H X, KLAVETTER K  C,  MEYERSON M,  et al. Tin
            了体积膨胀,金属硫化物/金属硒化物组成的异质                                 microparticles for a lithium ion battery anode with enhanced cycling
            结结构可以提高电化学性能。在 0.2 A/g 电流密度                            stability and efficiency derived from Se-droping[J]. Journal of Materials
                                                                   Chemistry A, 2015, 3: 13500-13506.
            下,复合材料循环 100 圈后的可逆比容量仍高达
                                                               [14]  XIN S, YU L, YOU Y, et al. The electrochemistry with lithium versus
            430.7 mA·h/g。由此可见,复合材料表现出优异的电                          sodium of selenium confined to slit micropores in carbon[J]. Nano
            化学性能,因此,本文所合成的二维有序 SnSe 0.5S 0.5@                      Letters, 2016, 16(7): 4560-4568.
                                                               [15]  LI Q Q, LIU H G, YAO Z P, et al. Electrochemistry of selenium with
            N-C 复合材料具有制备简单、比容量大、循环稳定                               sodium and lithium: Kinetics and reaction mechanism[J]. ACS Nano,
            性好等特点,在 SIBs 电极材料中具有广阔的应用                              2016, 10: 8788-8795.
                                                               [16]  LU L, ZHANG L, ZENG H, et al. Enhanced cycling performance of
            前景。                                                    Se-doped SnS carbon nanofibers as negative electrode for lithium-ion
                                                                   batteries[J]. Journal of  Alloys and Compounds, 2017, 659:  1294-
            参考文献:                                                  1300.
            [1]   KUBOTA  K, DAHBI M, HOSAKA  T,  et al.  Towards K-ion and   [17]  SHI W D (施伟东). Tin selenide nanoflower and preparation method
                 Na-ion batteries as “beyond Li-ion”[J]. The Chemical Record, 2018,   thereof: CN102897724B[P]. 2014-08-20.
                 18: 459-479.                                  [18]  FANG Y J, YU X  Y, LOU  W X. Formation of polypyrrole-coated
            [2]   FANG Y, YU X, LOU X W. Bullet-like Cu 9S 5 hollow particles coated   Sb 2Se 3  microclips with enhanced sodium storage properties[J].
                 with nitrogen-doped carbon for sodium-ion batteries[J]. Angewandte   Angewandte Chemie International Edition, 2018, 57(31): 9859-9863.
                 Chemie International Edition, 2019, 58: 7744-7748.   [19]  TANG Q M, CUI Y H, WU J W, et al. Ternary tin selenium sulfide
            [3]   LIANG J M, ZHANG L J, XI D G, et al. Research progress on tin-   (SnSe 0.5S 0.5) nano alloy as the high-performance anode for lithium-
                 based anode materials for sodium ion batteries[J]. Rare Metals, 2020,   ion and sodium-ion batteries[J]. Nano Energy, 2017, 41: 377-386.
                 39(9): 1005-1018.                             [20]  LIU H, JIA M Q, SUN N, et al. Nitrogen-rich mesoporous carbon as
            [4]   HUANG J Q, GUO X  Y, DU X Q,  et al.  Nanostructures of  solid   anode material for high-performance  sodium-ion batteries[J].  ACS
                 electrolyte interphases and their consequences for microsized Sn   Applied Materials & Interfaces, 2015, 7(49): 27124-27130.
                 anodes in sodium ion batteries[J]. Energy & Environmental Science,   [21]  GI D P, KANG  Y C.  Yolk-shell-structured nanospheres with goat
                 2019, 12(5): 1550-1557.                           pupil-like S-doped SnSe yolk and hollow carbon-shell configuration
            [5]   KOMABA S, MATSUURA Y, ISHIKAWA T, et al. Redox reaction   as anode  material for sodium-ion storage[J]. Small Methods, 2021,
                 of Sn-polyacrylate electrodes in aprotic Na cell[J]. Electrochemistry   5(6): 2100302.
                 Communications, 2012, 21: 65-68.              [22]  TANG Q M, SU H, CUI Y H, et al. Ternary tin-based chalcogenide
            [6]   ZHANG F, XIA C, ZHU J J, et al. SnSe 2 2D anodes for advanced   nanoplates as a promising anode material for lithium-ion batteries[J].
                 sodium ion  batteries[J]. Advanced Energy Materials, 2016, 6(22):   Journal of Power Sources, 2018, 379: 182-190.
                 1601188.                                      [23]  ZHANG F, SHENG Y, SHAO M, et al. SnSe 2 nanoparticles chemically
            [7]   FAN X L, SHAO J, XIAO X Z, et al. SnLi 4.4 nanoparticles encapsulated   embedded in a carbon shell for high-rate sodium-ion storage[J]. ACS
                 in carbon matrix as high performances anode material for lithium-ion   Applied Materials & Interfaces, 2020, 12: 2346-2353.
                 batteries[J]. Nano Energy, 2014, 9: 196-203.   [24]  ZHANG Z, ZHAO X X, LI J. SnSe x flowerlike composites as anode
            [8]   KRAVCHYK K,  PROTESESCU  L, BODNARCHUK M  I,  et al.   materials for sodium ion batteries[J]. Materials Letters, 2016, 162:
                 Monodisperse and inorganically capped Sn and Sn/SnO 2 nanocrystals   169-172.
                 for high-performance Li-ion battery andoes[J]. Journal of the American   [25]  WANG W, LI P H, ZHANG H, et al. Ultrathin layered SnSe nanoplates
                 Chemical Society, 2013, 135(11): 4199-4202.       for low voltage, high-rate, and long-life alkali-ion batteries[J]. Small,
            [9]   QIN J, HE C N, ZHAO N Q, et al. Graphene networks anchored with   2017, 13(46): 1702228.
                 Sn@graphene as lithium ion battery anode[J]. ACS Nano, 2014, 8(2):   [26]  YANG X, ZHANG R Y, CHEN  N,  et al.  Assembly of SnSe
                 1728-1738.                                        nanoparticles confined in graphene for enhanced sodium-ion storage
            [10]  WANG Z Y, LUAN D Y, WEN X. Fast formation of SnO 2 nanoboxes   performance[J]. Chemical Europe, 2016, 22(4): 1445-1451.
                 with enhanced lithium storage capability[J]. Journal of the American   [27]  MENG Y, WANG Y J, ZHANG Z K, et al. A phytic acid derived
                 Chemical Society, 2011, 133(13): 4738-4741.       LiMn 0.5Fe 0.5PO 4/carbon composite of high energy density for lithium
            [11]  YING H J, ZHANG S L, MENG Z, et al. Ultrasmall Sn nanodots   rechargeable batteries[J]. Scientific Reports, 2019, 9(1): 6665.
   179   180   181   182   183   184   185   186   187   188   189