Page 184 - 《精细化工》2022年第2期
P. 184
·388· 精细化工 FINE CHEMICALS 第 39 卷
3 结论 embedded inside N-doped carbon microcages as high-performances
lithium and sodium ion battery anodes[J]. Journal of Materials
Chemistry A, 2017, 5: 8334-8342.
通过简单的水热法制备了具有清晰异质结结构 [12] CAI Q F, LI Y Y, WANG L, et al. Freestanding hollow double-shell
的有序 SnSe 0.5 S 0.5 @N-C 复合材料。N-C 层增加了 Se@CN x nanobelts as large-capacity and high-rate cathodes for Li-Se
+
电导率促使 Na 快速扩散,并在充放电过程中缓解 batteries[J]. Nano Energy, 2017, 32: 1-9.
[13] DANG H X, KLAVETTER K C, MEYERSON M, et al. Tin
了体积膨胀,金属硫化物/金属硒化物组成的异质 microparticles for a lithium ion battery anode with enhanced cycling
结结构可以提高电化学性能。在 0.2 A/g 电流密度 stability and efficiency derived from Se-droping[J]. Journal of Materials
Chemistry A, 2015, 3: 13500-13506.
下,复合材料循环 100 圈后的可逆比容量仍高达
[14] XIN S, YU L, YOU Y, et al. The electrochemistry with lithium versus
430.7 mA·h/g。由此可见,复合材料表现出优异的电 sodium of selenium confined to slit micropores in carbon[J]. Nano
化学性能,因此,本文所合成的二维有序 SnSe 0.5S 0.5@ Letters, 2016, 16(7): 4560-4568.
[15] LI Q Q, LIU H G, YAO Z P, et al. Electrochemistry of selenium with
N-C 复合材料具有制备简单、比容量大、循环稳定 sodium and lithium: Kinetics and reaction mechanism[J]. ACS Nano,
性好等特点,在 SIBs 电极材料中具有广阔的应用 2016, 10: 8788-8795.
[16] LU L, ZHANG L, ZENG H, et al. Enhanced cycling performance of
前景。 Se-doped SnS carbon nanofibers as negative electrode for lithium-ion
batteries[J]. Journal of Alloys and Compounds, 2017, 659: 1294-
参考文献: 1300.
[1] KUBOTA K, DAHBI M, HOSAKA T, et al. Towards K-ion and [17] SHI W D (施伟东). Tin selenide nanoflower and preparation method
Na-ion batteries as “beyond Li-ion”[J]. The Chemical Record, 2018, thereof: CN102897724B[P]. 2014-08-20.
18: 459-479. [18] FANG Y J, YU X Y, LOU W X. Formation of polypyrrole-coated
[2] FANG Y, YU X, LOU X W. Bullet-like Cu 9S 5 hollow particles coated Sb 2Se 3 microclips with enhanced sodium storage properties[J].
with nitrogen-doped carbon for sodium-ion batteries[J]. Angewandte Angewandte Chemie International Edition, 2018, 57(31): 9859-9863.
Chemie International Edition, 2019, 58: 7744-7748. [19] TANG Q M, CUI Y H, WU J W, et al. Ternary tin selenium sulfide
[3] LIANG J M, ZHANG L J, XI D G, et al. Research progress on tin- (SnSe 0.5S 0.5) nano alloy as the high-performance anode for lithium-
based anode materials for sodium ion batteries[J]. Rare Metals, 2020, ion and sodium-ion batteries[J]. Nano Energy, 2017, 41: 377-386.
39(9): 1005-1018. [20] LIU H, JIA M Q, SUN N, et al. Nitrogen-rich mesoporous carbon as
[4] HUANG J Q, GUO X Y, DU X Q, et al. Nanostructures of solid anode material for high-performance sodium-ion batteries[J]. ACS
electrolyte interphases and their consequences for microsized Sn Applied Materials & Interfaces, 2015, 7(49): 27124-27130.
anodes in sodium ion batteries[J]. Energy & Environmental Science, [21] GI D P, KANG Y C. Yolk-shell-structured nanospheres with goat
2019, 12(5): 1550-1557. pupil-like S-doped SnSe yolk and hollow carbon-shell configuration
[5] KOMABA S, MATSUURA Y, ISHIKAWA T, et al. Redox reaction as anode material for sodium-ion storage[J]. Small Methods, 2021,
of Sn-polyacrylate electrodes in aprotic Na cell[J]. Electrochemistry 5(6): 2100302.
Communications, 2012, 21: 65-68. [22] TANG Q M, SU H, CUI Y H, et al. Ternary tin-based chalcogenide
[6] ZHANG F, XIA C, ZHU J J, et al. SnSe 2 2D anodes for advanced nanoplates as a promising anode material for lithium-ion batteries[J].
sodium ion batteries[J]. Advanced Energy Materials, 2016, 6(22): Journal of Power Sources, 2018, 379: 182-190.
1601188. [23] ZHANG F, SHENG Y, SHAO M, et al. SnSe 2 nanoparticles chemically
[7] FAN X L, SHAO J, XIAO X Z, et al. SnLi 4.4 nanoparticles encapsulated embedded in a carbon shell for high-rate sodium-ion storage[J]. ACS
in carbon matrix as high performances anode material for lithium-ion Applied Materials & Interfaces, 2020, 12: 2346-2353.
batteries[J]. Nano Energy, 2014, 9: 196-203. [24] ZHANG Z, ZHAO X X, LI J. SnSe x flowerlike composites as anode
[8] KRAVCHYK K, PROTESESCU L, BODNARCHUK M I, et al. materials for sodium ion batteries[J]. Materials Letters, 2016, 162:
Monodisperse and inorganically capped Sn and Sn/SnO 2 nanocrystals 169-172.
for high-performance Li-ion battery andoes[J]. Journal of the American [25] WANG W, LI P H, ZHANG H, et al. Ultrathin layered SnSe nanoplates
Chemical Society, 2013, 135(11): 4199-4202. for low voltage, high-rate, and long-life alkali-ion batteries[J]. Small,
[9] QIN J, HE C N, ZHAO N Q, et al. Graphene networks anchored with 2017, 13(46): 1702228.
Sn@graphene as lithium ion battery anode[J]. ACS Nano, 2014, 8(2): [26] YANG X, ZHANG R Y, CHEN N, et al. Assembly of SnSe
1728-1738. nanoparticles confined in graphene for enhanced sodium-ion storage
[10] WANG Z Y, LUAN D Y, WEN X. Fast formation of SnO 2 nanoboxes performance[J]. Chemical Europe, 2016, 22(4): 1445-1451.
with enhanced lithium storage capability[J]. Journal of the American [27] MENG Y, WANG Y J, ZHANG Z K, et al. A phytic acid derived
Chemical Society, 2011, 133(13): 4738-4741. LiMn 0.5Fe 0.5PO 4/carbon composite of high energy density for lithium
[11] YING H J, ZHANG S L, MENG Z, et al. Ultrasmall Sn nanodots rechargeable batteries[J]. Scientific Reports, 2019, 9(1): 6665.