Page 49 - 《精细化工》2022年第2期
P. 49
第 2 期 黄 剑,等: 柔性表面增强拉曼散射基底分析检测农残进展 ·253·
应用于棉花、果蔬、烟草等农作物,可有效防治蛀 [4] SONG X, XU T L, SONG Y C, et al. Droplet array for open-channel
虫、棉铃虫等害虫。因其选择性强、分解快等优点, high-throughput SERS biosensing[J]. Talanta, 2020, 218:121206.
[5] GAHLAUT S K, SAVARGAONKAR D, SHARAN C, et al. SERS
使用量逐年增加。若不规范使用,容易致癌、致突 platform for dengue diagnosis from clinical samples employing a
变。PARNSUBSAKUL 等 [52] 通过真空辅助过滤制备 hand held Raman spectrometer[J]. Analytical Chemistry, 2020, 92(3):
2527-2534.
了等离子体 AgNPs 细菌纳米纤维素纸复合材料,实 [6] TRABOULSI H, AWADA C. Toward the development of ultrasensitive
现了苹果表面农药灭多威残留的高灵敏检测。 detectors for environmental applications: A kinetic study of Cr (Ⅲ)
AgNPs 负载至细菌纳米纤维素纸三维网络结构上, monitoring in water using EDTA and SERS techniques[J]. ACS
Omega, 2020, 5(48): 31352-31361.
提高了“热点”分布的空间密度及拉曼信号强度。 [7] ZHANG X L, XIAO X H, DAI Z G, et al. Ultrasensitive SERS
该基底对灭多威具有良好的检测性能。此外,该方 performance in 3D “sunflower-like” nanoarrays decorated with Ag
nanoparticles[J]. Nanoscale, 2017, 9(9): 3114-3120.
法具有简单、快速、低成本的实际应用价值,在开
[8] WANG H, LI K B, XU C, et al. Large-scale solvothermal synthesis
发新型的绿色 SERS 活性基底材料方面具有广阔的 of Ag nanocubes with high SERS activity[J]. Journal of Alloys and
前景。 Compounds, 2019, 772: 150-156.
[9] LIU X M, MA J F, JIANG P M, et al. Large-scale flexible surface-
enhanced Raman scattering (SERS) sensors with high stability and
4 结束语 signal homogeneity[J]. ACS Applied Materials & Interfaces, 2020,
12(40): 45332-45341.
制备柔性等离子体纳米颗粒复合基底的方法已 [10] MADDIPATLA D, NARAKATHU B B, ATASHBAR M. Recent
逐渐趋于成熟,主要包括原位还原、物理沉积、静 progress in manufacturing techniques of printed and flexible sensors:
A review[J]. Biosensors, 2020, 10(12): 199.
电纺丝和喷墨打印等方法。虽然柔性复合 SERS 基 [11] SHARM A B, FRONTIERA R R, HENRY A I, et al. SERS:
底的制备已取得了一定进展,但制备成本低、灵敏 Materials, applications, and the future[J]. Materials Today, 2012,
15(1/2): 16-25.
度高、重现性及均匀性好的柔性 SERS 活性基底, [12] RESTAINO S M, WHITE I M. A critical review of flexible and porous
仍是柔性 SERS 基底面临的巨大挑战,具体体现在 SERS sensors for analytical chemistry at the point-of-sample[J].
Analytica Chimica Acta, 2019, 1060: 17-29.
如下几个方面:(1)金属等离子体产生的“热点”
[13] OGUNDARE S A, VANZYL W E. A review of cellulose-based
是 SERS 技术检测的关键,但柔性薄膜上沉积等离 substrates for SERS: Fundamentals, design principles, applications[J].
子体结构时会经常发生弯曲或拉伸,从而导致“热 Cellulose, 2019, 26(11): 6489-6528.
[14] HE S, CHUA J, TAN E K M, et al. Optimizing the SERS enhancement
点”的分布不均,因此,如何控制柔性材料的机械 of a facile gold nanostar immobilized paper-based SERS substrate[J].
稳定性是科研工作者继续探索的方向;(2)在实际 RSC Advances, 2017, 7(27): 16264-16272.
[15] YANG N, YOU T T, GAO Y K, et al. Fabrication of a flexible gold
应用中,农产品表面药物组分复杂、含量极低,待 nanorod polymer metafilm via a phase transfer method as a SERS
测物质特征峰的强度与待测物的浓度或者含量之间 substrate for detecting food contaminants[J]. Journal of Agricultural
and Food Chemistry, 2018, 66(26): 6889-6896.
并非都是对数线性关系,还需借助数学建模手段,
[16] YE P Y, XIN W B, DE ROSA I M, et al. One-pot self-templated
构建多传感检测体系,实现柔性 SERS 基底在农药 growth of gold nanoframes for enhanced surface-enhanced Raman
残留中的标准化应用;(3)目前,SERS 技术仅用于 scattering performance[J]. ACS Aapplied Materials & Interfaces,
2020, 12(19): 22050-22057.
农产品中某些有害物质的检测,尚未建立全面的有 [17] LIANG X, LI N, ZHANG R H, et al. Carbon-based SERS biosensor:
毒害物“指纹”图库,需进一步完善“拉曼光谱指 From substrate design to sensing and bioapplication[J]. NPG Asia
Materials, 2021, 13(1): 1-36.
纹”数据库;(4)尝试更多具有优异 SERS 性能柔 [18] ZHANG C, LI C H, YU J, et al. SERS activated platform with
性材料的研制开发,增加 SERS 的检测应用领域;(5) three-dimensional hot spots and tunable nanometer gap[J]. Sensors
and Actuators B: Chemical, 2018, 258: 163-171.
关于“可再生柔性 SERS 基底”的研究还处于初始
[19] KIM J, JANG Y, KIM N J, et al. Study of chemical enhancement
阶段,所以加快制备灵敏度高、绿色可再生的柔性 mechanism in non-plasmonic surface enhanced Raman spectroscopy
SERS 基底是非常必要的。 (SERS)[J]. Frontiers in Chemistry, 2019, 7: 582-588.
[20] ZHANG Y F (张一帆), XU D P (徐大鹏), JIANG H Z (江恒泽), et al.
Research progress in preparation of metal nanomaterials by solid-sate
参考文献:
inoics method[J]. Fine Chemicals (精细化工), 2020, 37(9):1762-1768.
[1] WANG K, SUN D W, PU H, et al. Shell thickness-dependent [21] LI J F, ZHANG Y J, DING S Y, et al. Core-shell nanoparticle-
Au@Ag nanoparticles aggregates for high-performance SERS enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(7):
applications[J]. Talanta, 2019, 195: 506-515. 5002-5069.
[2] HE H, SUN D W, PU H, et al. Bridging Fe 3O 4@Au nanoflowers and [22] DOERING W E, NIE S M. Single-molecule and single-nanoparticle
Au@Ag nanospheres with aptamer for ultrasensitive SERS detection SERS: Examining the roles of surface active sites and chemical
of aflatoxin B1[J]. Food Chemistry, 2020, 324: 126832. enhancement[J]. The Journal of Physical Chemistry B, 2002, 106(2):
[3] WANG S F, ZOU S M, YANG S L, et al. HfO 2-wrapped slanted Ag 311-317.
nanorods array as a reusable and sensitive SERS substrate for trace [23] DONG R L (董荣录), LI S Y (李绍飞), LIN D Y (林东岳). Progress
analysis of uranyl compounds[J]. Sensors and Actuators B: Chemical, of the applications of surface-enhanced Raman spectroscopy in illicit
2018, 265: 539-546. drug detection[J]. Scientia Sinica(Chimica) (中国科学: 化学), 2021,