Page 83 - 《精细化工》2022年第2期
P. 83

3+
             第 2 期             张   涛,等: Al 预嵌(NH 4 ) 2 V 10 O 25 ·8H 2 O 正极材料在水系锌离子电池的应用              ·287·

                                                               3    结论


                                                                   通过水热法成功合成了(NH 4 ) 2 V 10 O 25•8H 2O(NVO)
                                                                    3+
                                                               与 Al 层间预嵌的(NH 4 ) 2 V 10 O 25 •8H 2 O(Al-6NVO)正
                                                               极材料,以 2 mol/L ZnSO 4 为电解液,商业锌片为负
                                                               极组装 AZIBs。通过 XRD、SEM、TEM 及相关电
                                                                                    3+
                                                               化学性能研究,证明 Al 层间预嵌有利于扩大层间
                                                               距,扩充锌离子的扩散通道,有效提高材料的比容
                                                               量、倍率性能及循环稳定性能。Al-6NVO 材料在 0.1、
                                                               0.5、1.0、2.0 A/g 电流密度下放电比容量分别为 386、
                                                               279、238、190 mA·h/g,表现出优异的倍率性能。
                                                               在 2.0 A/g 电流密度下循环 1200 圈放电比容量仍能
                                                               保持在 122.8 mA·h/g,容量保持率高达 94.6%。实
                                                                                   +
                                                                                         3+
                                                               验表明,双阳离子 NH 4 和 Al 协同于层间形成支柱
                                                                                2+
                                                               作用能有效提高 Zn 的扩散动力学,改善材料的电
                                                               化学性能,为制备出具有长周期循环稳定性的水系
                                                               锌离子电池正极材料提供重要思路。
                                                               参考文献:

                                                               [1]   LIU J L (刘晶丽), CHEN S (陈上), WU X M (吴显明), et al.
                                                                   Preparation of Li 4Ti 5O 12/C composites using bamboo leaves as carbon
                                                                   source[J]. Fine Chemicals (精细化工), 2021, 38(2): 306-309,322.
                                                               [2]   ALFARUQI M H, MATHEW V, GIM J, et al.  Electrochemically
                                                                   induced  structural transformation in  a  γ-MnO 2 cathode of a high
                                                                   capacity zinc-ion battery system[J]. Chemistry of Materials, 2015,
                                                                   27(10): 3609-3620.
                                                               [3]   ISLAM S, ALFARUQI M H, MATHEW V, et al.  Facile synthesis
                                                                   and the exploration of the zinc storage  mechanism of  β-MnO 2
                                                                   nanorods with exposed (101) planes as a novel cathode material for
                                                                   high performance eco-friendly zinc-ion batteries[J]. Journal of
                                                                   Materials Chemistry A, 2017, 5(44): 23299-23309.
                                                               [4]   YANG S N, ZHANG M S, WU X W, et  al.  The excellent
                                                                   electrochemical performances of ZnMn 2O 4/Mn 2O 3: The  composite
                                                                   cathode material for potential aqueous zinc ion batteries[J]. Journal
                                                                   of Electroanalytical Chemistry, 2019, 832: 69-74.
                                                               [5]   WU X W, LI Y  H, XIANG  Y  H, et al.  The electrochemical
                                                                   performance of aqueous  rechargeable battery of Zn/Na 0.44MnO 2
                                                                   based on hybrid electrolyte[J]. Journal of Power Sources, 2016, 336:
                                                                   35-39.
                                                               [6]   ZHOU S H (周世昊), ZHAO C X (赵才贤), ZHANG T (张涛), et al.
                                                                   Preparation of ZnMn 2O 4/Mn 2O 3/CNT composite cathode  material
                                                                   and its application in aqueous zinc-ion batteries[J]. Fine Chemicals
                                                                   (精细化工), 2021, 38(4): 765-773.
                                                               [7]   ZHANG L Y,  CHEN L, ZHOU  X F, et al.  Towards high-voltage
                                                                   aqueous metal-ion batteries beyond 1. 5 V: The zinc/zinc hexacyanoferrate
                                                                   system[J]. Advanced Energy Materials, 2015, 5(2): 1400930.
            图 5  Al-6NVO 材料在不同扫描速率下的循环伏安曲线                     [8]   CAO Z Y, WANG L P, ZHANG H, et al. Localized ostwald ripening
                  (a)及不同峰值下 logv 与 logi 曲线(b),不同扫                  guided dissolution/regrowth to ancient chinese coin-shaped VO 2
                                                                   nanoplates with enhanced mass transfer for zinc ion  storage[J].
                  描速率下赝电容贡献百分比图(c),在 1.0 mV/s                      Advanced Functional Materials, 2020, 30(25): 2000472.
                  下的电容效应图(d),充电-放电的 GITT 曲线(e),                [9]   YAN M Y, HE P,  CHEN  Y, et al. Water-lubricated intercalation in
                    2+
                  Zn 化学扩散系数与比容量(f)                                 V 2O 5•nH 2O for high-capacity and high-rate aqueous rechargeable
                                                                   zinc batteries[J]. Advanced Materials, 2018, 30(1): 1703725.
            Fig.  5    Cyclic voltammetry curves at different  scanning   [10]  HE P G,  LIU J H, ZHAO X  D, et  al.  A three-dimensional
                   speeds (a) as  well as logv  and logi curves at   interconnected V 6O 13 nest with a V -rich state for ultrahigh Zn ion
                                                                                         5+
                   different peaks (b), pseudo capacitance contribution   storage[J]. Journal  of Materials Chemistry A, 2020, 8(20): 10370-
                   percentage diagram at different scanning speeds (c),   10376.
                   capacitance effect diagram at 1.0 mV/s (d), GITT   [11]  SHE B H, SHAN  L  T,  CHEN H J, et  al.  Investigation of sodium
                                                  2+
                   curves of charge-discharge (e) and  Zn  chemical   vanadate as a high-performance aqueous zinc-ion battery cathode[J].
                   diffusion coefficient and  specific  capacity  (f)  of   Journal of Energy Chemistry, 2019, 37(1): 172-175.
                   Al-6NVO material                                                           (下转第 336 页)
   78   79   80   81   82   83   84   85   86   87   88