Page 83 - 《精细化工》2022年第2期
P. 83
3+
第 2 期 张 涛,等: Al 预嵌(NH 4 ) 2 V 10 O 25 ·8H 2 O 正极材料在水系锌离子电池的应用 ·287·
3 结论
通过水热法成功合成了(NH 4 ) 2 V 10 O 25•8H 2O(NVO)
3+
与 Al 层间预嵌的(NH 4 ) 2 V 10 O 25 •8H 2 O(Al-6NVO)正
极材料,以 2 mol/L ZnSO 4 为电解液,商业锌片为负
极组装 AZIBs。通过 XRD、SEM、TEM 及相关电
3+
化学性能研究,证明 Al 层间预嵌有利于扩大层间
距,扩充锌离子的扩散通道,有效提高材料的比容
量、倍率性能及循环稳定性能。Al-6NVO 材料在 0.1、
0.5、1.0、2.0 A/g 电流密度下放电比容量分别为 386、
279、238、190 mA·h/g,表现出优异的倍率性能。
在 2.0 A/g 电流密度下循环 1200 圈放电比容量仍能
保持在 122.8 mA·h/g,容量保持率高达 94.6%。实
+
3+
验表明,双阳离子 NH 4 和 Al 协同于层间形成支柱
2+
作用能有效提高 Zn 的扩散动力学,改善材料的电
化学性能,为制备出具有长周期循环稳定性的水系
锌离子电池正极材料提供重要思路。
参考文献:
[1] LIU J L (刘晶丽), CHEN S (陈上), WU X M (吴显明), et al.
Preparation of Li 4Ti 5O 12/C composites using bamboo leaves as carbon
source[J]. Fine Chemicals (精细化工), 2021, 38(2): 306-309,322.
[2] ALFARUQI M H, MATHEW V, GIM J, et al. Electrochemically
induced structural transformation in a γ-MnO 2 cathode of a high
capacity zinc-ion battery system[J]. Chemistry of Materials, 2015,
27(10): 3609-3620.
[3] ISLAM S, ALFARUQI M H, MATHEW V, et al. Facile synthesis
and the exploration of the zinc storage mechanism of β-MnO 2
nanorods with exposed (101) planes as a novel cathode material for
high performance eco-friendly zinc-ion batteries[J]. Journal of
Materials Chemistry A, 2017, 5(44): 23299-23309.
[4] YANG S N, ZHANG M S, WU X W, et al. The excellent
electrochemical performances of ZnMn 2O 4/Mn 2O 3: The composite
cathode material for potential aqueous zinc ion batteries[J]. Journal
of Electroanalytical Chemistry, 2019, 832: 69-74.
[5] WU X W, LI Y H, XIANG Y H, et al. The electrochemical
performance of aqueous rechargeable battery of Zn/Na 0.44MnO 2
based on hybrid electrolyte[J]. Journal of Power Sources, 2016, 336:
35-39.
[6] ZHOU S H (周世昊), ZHAO C X (赵才贤), ZHANG T (张涛), et al.
Preparation of ZnMn 2O 4/Mn 2O 3/CNT composite cathode material
and its application in aqueous zinc-ion batteries[J]. Fine Chemicals
(精细化工), 2021, 38(4): 765-773.
[7] ZHANG L Y, CHEN L, ZHOU X F, et al. Towards high-voltage
aqueous metal-ion batteries beyond 1. 5 V: The zinc/zinc hexacyanoferrate
system[J]. Advanced Energy Materials, 2015, 5(2): 1400930.
图 5 Al-6NVO 材料在不同扫描速率下的循环伏安曲线 [8] CAO Z Y, WANG L P, ZHANG H, et al. Localized ostwald ripening
(a)及不同峰值下 logv 与 logi 曲线(b),不同扫 guided dissolution/regrowth to ancient chinese coin-shaped VO 2
nanoplates with enhanced mass transfer for zinc ion storage[J].
描速率下赝电容贡献百分比图(c),在 1.0 mV/s Advanced Functional Materials, 2020, 30(25): 2000472.
下的电容效应图(d),充电-放电的 GITT 曲线(e), [9] YAN M Y, HE P, CHEN Y, et al. Water-lubricated intercalation in
2+
Zn 化学扩散系数与比容量(f) V 2O 5•nH 2O for high-capacity and high-rate aqueous rechargeable
zinc batteries[J]. Advanced Materials, 2018, 30(1): 1703725.
Fig. 5 Cyclic voltammetry curves at different scanning [10] HE P G, LIU J H, ZHAO X D, et al. A three-dimensional
speeds (a) as well as logv and logi curves at interconnected V 6O 13 nest with a V -rich state for ultrahigh Zn ion
5+
different peaks (b), pseudo capacitance contribution storage[J]. Journal of Materials Chemistry A, 2020, 8(20): 10370-
percentage diagram at different scanning speeds (c), 10376.
capacitance effect diagram at 1.0 mV/s (d), GITT [11] SHE B H, SHAN L T, CHEN H J, et al. Investigation of sodium
2+
curves of charge-discharge (e) and Zn chemical vanadate as a high-performance aqueous zinc-ion battery cathode[J].
diffusion coefficient and specific capacity (f) of Journal of Energy Chemistry, 2019, 37(1): 172-175.
Al-6NVO material (下转第 336 页)