Page 96 - 《精细化工》2022年第3期
P. 96
·518· 精细化工 FINE CHEMICALS 第 39 卷
驱动 PEG/EG 复合定形相变储能材料。EG 在相变材 nanotubes as phase change materials with enhanced thermal, electrical
conductivity, light-to-thermal, and electro-to-thermal performances[J].
料中构建的导热、导电网络赋予复合相变材料优异 Carbon, 2019, 149: 263-272.
[17] UMAIR M M, ZHANG Y A, TANG B T, et al. A novel flexible
的导热和导电能力。95% PEG/EG 与纯 PEG 相比,
phase change composite with electro-driven shape memory, energy
储热速率提高了 73%,在外加电压为 7 V 时,其电 conversion/storage and motion sensing properties[J]. Journal of
Materials Chemistry A, 2019, 7(46): 26385-26392.
热转换和热能存储效率达到 80.6%。此外,该复合 [18] MALKEI M, AHAMAID P T, EMROOZ H B M, et al. Photo-
材料具有良好的定形效果和较高的储热能力,相变 thermal conversion structure by infiltration of paraffin in three
dimensionally interconnected porous polystyrene-carbon nanotubes
焓值高达 152.2 J/g。综上所述,95% PEG/EG 材料 (PS-CNT) polyhipe foam[J]. Solar Energy Materials and Solar Cells,
2019, 191: 266-274.
具有良好的热能存储、定形效果、导热性能和电热 [19] ZHANG Y A, UMAIR M M, TANG B T, et al. Phase change
转换效率,在电驱动热能存储系统和能量转换与存 materials for electron-triggered energy conversion and storage: A
review[J]. Journal of Materials Chemistry A, 2019, 7(39):
储领域具有应用潜力。 22218-22228.
[20] LIU Z P, ZOU R Q, CAO A Y, et al. Tailoring carbon nanotube
参考文献: density for modulating electro-to-heat conversion in phase change
composites[J]. Nano Letters, 2013, 13(9): 4028-4035.
[1] CUNHA S R L D, DE-AGUIAR J L B. Phase change materials and [21] ZHANG K, ZHANG Y W, NIU X F, et al. Recent advancements on
energy efficiency of buildings: A review of knowledge[J]. Journal of thermal management and evaluation for data centers[J]. Applied
Energy Storage, 2020, 27: 101083. Thermal Engineering, 2018, 142: 215-231.
[2] QIAN Y, WEI P, LIU J P, et al. Preparation of a novel PEG [22] MURPHY M D, MAHONY M J, UPTON J. Comparison of control
composite with halogen-free flame retardant supporting matrix for systems for the optimisation of ice storage in a dynamic real time
thermal energy storage application[J]. Applied Energy 2013, 106: electricity pricing environment[J]. Applied Energy, 2015, 149: 392-
321-327. 403.
[3] ZHANG Y A, XIU J H, TANG B T, et al. Novel semi- [23] YAN C C, SHI W X, ZHAO Y, et al. Optimal design and application
interpenetrating network structural phase change composites with of a compound cold storage system combining seasonal ice storage
high phase change enthalpy[J]. AIChE Journal, 2018, 64(2): 688-696. and chilled water storage[J]. Applied Energy, 2016, 171: 1-11.
[4] WANG J F, XIE H Q, XIN Z. Thermal properties of paraffin based [24] CHEN X, TANG Z D, GAO H Y, et al. Phase change materials for
composites containing multi-walled carbon nanotubes[J]. electro-thermal conversion and storage: From fundamental understanding
Thermochimica Acta, 2009, 488(1/2): 39-42. to engineering design[J]. iScience, 2020, 23(6): 101208.
[5] SARI A, ALKAN C, UZUN O, et al. Eudragit S (methyl methacrylate [25] GE J, SHI L A, YU S H, et al. Joule-heated graphene-wrapped
methacrylic acid copolymer)/fatty acid blends as form-stable phase sponge enables fast clean-up of viscous crude-oil spill[J]. Nature
change material for latent heat thermal energy storage[J]. Journal of Nanotechnology, 2017, 12(5): 434-440.
Applied Polymer Science, 2006, 101(3): 1402-1406. [26] GUO X F, LIU C, WANG Z Y, et al. Electrothermal conversion
[6] JIANG Y, DING E Y, LI G K. Study on transition characteristics of phase change composites: The case of polyethylene glycol infiltrated
PEG/CDA solid-solid phase change materials[J]. Polymer, 2002, graphene oxide/carbon nanotube networks[J]. Industrial &
43(1): 117-122. Engineering Chemistry Research, 2018, 57(46): 15697-15702.
[7] ZHANG N, YUAN Y P, GUI Y W, et al. Latent heat thermal energy [27] ZHOU Y, WANG X J, YANG Y M, et al. Polyurethane-based
storage systems with solid-liquid phase change materials: A solid-solid phase change materials with halloysite nanotubes-hybrid
review[J]. Advanced Engineering Materials, 2018, 20(6): 1700753. graphene aerogels for efficient light- and electro-thermal conversion
[8] ZHAO M Y (赵梦阳), ZHANG Y A (张宇昂), TANG B T (唐炳涛). and storage[J]. Carbon, 2019, 142: 558-566.
Research process in polyurethane form-stable composite phase [28] UMAIR M M, ZHANG Y A, TANG B T, et al. Form-stable
change materials[J]. Fine Chemicals (精细化工), 2020, 37(11): 2182- phase-change composites supported by a biomass-derived carbon
2192, 2215. scaffold with multiple energy conversion abilities[J]. Industrial &
[9] FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on Engineering Chemistry Research, 2020, 59(4): 1393-1401.
phase change energy storage: Materials and applications[J]. Energy [29] FU W W, ZOU T, LIANG X H, et al. Thermal properties and thermal
Conversion and Management, 2004, 45(9/10): 1597-1615. conductivity enhancement of composite phase change material using
[10] WANG W T, FAN X Q, TANG B T, et al. Extracorporeal magnetic sodium acetate trihydrate-urea/expanded graphite for radiant floor
thermotherapy materials for self-controlled temperature through heating system[J]. Applied Thermal Engineering, 2018, 138: 618-626.
phase transition[J]. Chemical Engineering Journal, 2019, 358: 1279- [30] YANG Y N, PANG Y, LIU Y, et al. Preparation and thermal
1286. properties of polyethylene glycol/expanded graphite as novel form-
[11] HARISH S, ISHIKAWA K, CHIASHI S, et al. Anomalous thermal stable phase change material for indoor energy saving[J]. Materials
conduction characteristics of phase change composites with single- Letters, 2018, 216: 220-223.
walled carbon nanotube inclusions[J]. The Journal of Physical [31] CHEN L J, ZOU R Q, XIA W G, et al. Electro- and photodriven
Chemistry C, 2013, 117(29): 15409-15413. phase change composites based on wax-infiltrated carbon nanotube
[12] YAN D M (鄢冬茂), CAI W R (蔡文蓉), YIN G Q (殷国强), et al. sponges[J]. ACS Nano, 2012, 6(12): 10884-10892.
Preparation and properties of PEG/APS-SiO 2/O-CNTs phase change [32] ZHANG Y A, WANG J S, TANG B T, et al. Ag-graphene/PEG
materials with enhanced thermal conductivity[J]. Fine Chemicals (精 composite phase change materials for enhancing solar-thermal
细化工), 2021, 38(4): 729-735. energy conversion and storage capacity[J]. Applied Energy, 2019,
[13] MALEK M, KARIMIAN H, SHOKOUHIMEHR M, et al. Development 237: 83-90.
of graphitic domains in carbon foams for high efficient electro/photo- [33] TAN B, HUANG Z H, YIN Z Y, et al. Preparation and thermal
to-thermal energy conversion phase change composites[J]. Chemical properties of shape-stabilized composite phase change materials
Engineering Journal, 2019, 362: 469-481. based on polyethylene glycol and porous carbon prepared from
[14] NIU Z X, YUAN W Z. Highly efficient thermo- and sunlight-driven potato[J]. RSC Advances, 2016, 6(19): 15821-15830.
energy storage for thermo-electric energy harvesting using sustainable [34] LI Y Q, SAMAD Y A, LIAO K, et al. From biomass to high
nanocellulose-derived carbon aerogels embedded phase change performance solar-thermal and electric-thermal energy conversion
materials[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): and storage materials[J]. Journal of Materials Chemistry A, 2014,
17523-17534. 2(21): 7759-7765.
[15] FAN X Q, XIAO J Q, TANG B T, et al. Novel magnetic-to-thermal [35] WU W H, YAO R M, HUANG X Y, et al. Dual-encapsulation of
conversion and thermal energy management composite phase change octadecanol in thermal/electric conductor for enhanced thermoconductivity
material[J]. Polymers, 2018, 10(6): 585. and efficient energy storage[J]. Materials Chemistry Frontiers, 2017,
[16] CAO R R, CHEN S, ZHANG X X, et al. Functionalized carbon 1(7): 1430-1434.