Page 96 - 《精细化工》2022年第3期
P. 96

·518·                             精细化工   FINE CHEMICALS                                 第 39 卷

            驱动 PEG/EG 复合定形相变储能材料。EG 在相变材                           nanotubes as  phase  change materials with enhanced thermal, electrical
                                                                   conductivity,  light-to-thermal, and electro-to-thermal  performances[J].
            料中构建的导热、导电网络赋予复合相变材料优异                                 Carbon, 2019, 149: 263-272.
                                                               [17]  UMAIR M M,  ZHANG  Y A, TANG B T,  et al.  A novel flexible
            的导热和导电能力。95% PEG/EG 与纯 PEG 相比,
                                                                   phase change composite with electro-driven shape memory, energy
            储热速率提高了 73%,在外加电压为 7 V 时,其电                            conversion/storage and motion sensing properties[J]. Journal of
                                                                   Materials Chemistry A, 2019, 7(46): 26385-26392.
            热转换和热能存储效率达到 80.6%。此外,该复合                          [18]  MALKEI  M, AHAMAID P T, EMROOZ H  B M,  et al.  Photo-
            材料具有良好的定形效果和较高的储热能力,相变                                 thermal conversion structure by infiltration of  paraffin in three
                                                                   dimensionally interconnected porous  polystyrene-carbon  nanotubes
            焓值高达 152.2 J/g。综上所述,95% PEG/EG 材料                      (PS-CNT) polyhipe foam[J]. Solar Energy Materials and Solar Cells,
                                                                   2019, 191: 266-274.
            具有良好的热能存储、定形效果、导热性能和电热                             [19]  ZHANG Y A,  UMAIR M M, TANG B T, et  al. Phase change
            转换效率,在电驱动热能存储系统和能量转换与存                                 materials for electron-triggered energy conversion and storage: A
                                                                   review[J]. Journal of Materials Chemistry A, 2019, 7(39):
            储领域具有应用潜力。                                             22218-22228.
                                                               [20]  LIU Z P, ZOU R  Q, CAO A Y,  et al. Tailoring carbon nanotube
            参考文献:                                                  density for modulating electro-to-heat conversion  in phase change
                                                                   composites[J]. Nano Letters, 2013, 13(9): 4028-4035.
            [1]   CUNHA S R L D, DE-AGUIAR J L B. Phase change materials and   [21]  ZHANG K, ZHANG Y W, NIU X F, et al. Recent advancements on
                 energy efficiency of buildings: A review of knowledge[J]. Journal of   thermal  management and evaluation for data centers[J]. Applied
                 Energy Storage, 2020, 27: 101083.                 Thermal Engineering, 2018, 142: 215-231.
            [2]   QIAN Y, WEI P, LIU J P,  et al. Preparation of a novel PEG   [22]  MURPHY M D, MAHONY M J, UPTON J. Comparison of control
                 composite with halogen-free flame retardant supporting  matrix for   systems for the optimisation of ice storage in a dynamic  real time
                 thermal  energy storage application[J]. Applied Energy 2013, 106:   electricity pricing environment[J]. Applied Energy, 2015, 149: 392-
                 321-327.                                          403.
            [3]   ZHANG Y A,  XIU J H, TANG  B T, et  al. Novel semi-   [23]  YAN C C, SHI W X, ZHAO Y, et al. Optimal design and application
                 interpenetrating network structural phase  change composites with   of a compound cold storage system combining seasonal ice storage
                 high phase change enthalpy[J]. AIChE Journal, 2018, 64(2): 688-696.   and chilled water storage[J]. Applied Energy, 2016, 171: 1-11.
            [4]   WANG J F, XIE H Q, XIN Z. Thermal properties of paraffin based   [24]  CHEN X, TANG Z D, GAO H Y, et al. Phase change materials for
                 composites  containing  multi-walled  carbon  nanotubes[J].  electro-thermal conversion and storage: From fundamental understanding
                 Thermochimica Acta, 2009, 488(1/2): 39-42.        to engineering design[J]. iScience, 2020, 23(6): 101208.
            [5]   SARI A, ALKAN C, UZUN O, et al. Eudragit S (methyl methacrylate   [25]  GE J, SHI L A,  YU S H,  et al.  Joule-heated graphene-wrapped
                 methacrylic  acid copolymer)/fatty acid blends as form-stable phase   sponge enables fast clean-up of viscous crude-oil spill[J].  Nature
                 change material for latent heat thermal energy storage[J]. Journal of   Nanotechnology, 2017, 12(5): 434-440.
                 Applied Polymer Science, 2006, 101(3): 1402-1406.   [26]  GUO X F, LIU C, WANG Z  Y,  et al.  Electrothermal conversion
            [6]   JIANG Y, DING E Y, LI G K. Study on transition characteristics of   phase change composites: The case of polyethylene glycol infiltrated
                 PEG/CDA solid-solid  phase change  materials[J]. Polymer, 2002,   graphene oxide/carbon nanotube networks[J]. Industrial &
                 43(1): 117-122.                                   Engineering Chemistry Research, 2018, 57(46): 15697-15702.
            [7]   ZHANG N, YUAN Y P, GUI Y W, et al. Latent heat thermal energy   [27]  ZHOU Y, WANG X J, YANG  Y  M,  et al.  Polyurethane-based
                 storage systems  with solid-liquid phase change  materials: A   solid-solid phase change materials with halloysite nanotubes-hybrid
                 review[J]. Advanced Engineering Materials, 2018, 20(6): 1700753.   graphene aerogels for efficient light- and electro-thermal conversion
            [8]   ZHAO M Y (赵梦阳), ZHANG Y A (张宇昂), TANG B T (唐炳涛).   and storage[J]. Carbon, 2019, 142: 558-566.
                 Research process in polyurethane form-stable composite phase   [28]  UMAIR M  M, ZHANG  Y  A, TANG B T, et  al. Form-stable
                 change materials[J]. Fine Chemicals  (精细化工), 2020, 37(11): 2182-   phase-change composites supported  by a biomass-derived carbon
                 2192, 2215.                                       scaffold with multiple energy conversion abilities[J]. Industrial &
            [9]   FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on   Engineering Chemistry Research, 2020, 59(4): 1393-1401.
                 phase  change energy  storage:  Materials and applications[J]. Energy   [29]  FU W W, ZOU T, LIANG X H, et al. Thermal properties and thermal
                 Conversion and Management, 2004, 45(9/10): 1597-1615.   conductivity enhancement of composite phase change material using
            [10]  WANG W T, FAN X Q, TANG B T, et al. Extracorporeal magnetic   sodium acetate trihydrate-urea/expanded graphite for radiant floor
                 thermotherapy materials for self-controlled temperature through   heating system[J]. Applied Thermal Engineering, 2018, 138: 618-626.
                 phase transition[J]. Chemical Engineering Journal, 2019, 358: 1279-   [30]  YANG Y N, PANG Y, LIU Y, et al. Preparation and thermal
                 1286.                                             properties of polyethylene glycol/expanded graphite as novel form-
            [11]  HARISH S, ISHIKAWA K, CHIASHI S, et al. Anomalous thermal   stable phase change material for indoor energy saving[J]. Materials
                 conduction characteristics of phase change composites with single-   Letters, 2018, 216: 220-223.
                 walled carbon nanotube inclusions[J].  The Journal of Physical   [31]  CHEN L J, ZOU  R Q,  XIA W G,  et al. Electro- and photodriven
                 Chemistry C, 2013, 117(29): 15409-15413.          phase change composites based on wax-infiltrated carbon nanotube
            [12]  YAN D M (鄢冬茂), CAI W R (蔡文蓉), YIN G Q (殷国强), et al.   sponges[J]. ACS Nano, 2012, 6(12): 10884-10892.
                 Preparation and properties of PEG/APS-SiO 2/O-CNTs phase change   [32]  ZHANG Y A, WANG J S, TANG B T, et al. Ag-graphene/PEG
                 materials with enhanced thermal conductivity[J]. Fine Chemicals (精  composite phase change  materials  for enhancing solar-thermal
                 细化工), 2021, 38(4): 729-735.                       energy conversion  and storage capacity[J]. Applied Energy, 2019,
            [13]  MALEK M, KARIMIAN H, SHOKOUHIMEHR M, et al. Development   237: 83-90.
                 of graphitic domains in carbon foams for high efficient electro/photo-   [33]  TAN B, HUANG  Z H, YIN Z Y,  et al.  Preparation and thermal
                 to-thermal energy conversion phase change composites[J]. Chemical   properties of shape-stabilized composite phase change materials
                 Engineering Journal, 2019, 362: 469-481.          based on polyethylene glycol and porous carbon prepared from
            [14]  NIU Z X, YUAN W Z. Highly efficient thermo- and sunlight-driven   potato[J]. RSC Advances, 2016, 6(19): 15821-15830.
                 energy storage for thermo-electric energy harvesting using sustainable   [34]  LI Y Q, SAMAD Y A, LIAO  K,  et al.  From biomass to high
                 nanocellulose-derived carbon aerogels embedded phase change   performance solar-thermal  and electric-thermal  energy conversion
                 materials[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20):   and  storage materials[J].  Journal  of Materials Chemistry A,  2014,
                 17523-17534.                                      2(21): 7759-7765.
            [15]  FAN X Q, XIAO J Q, TANG B T, et al. Novel magnetic-to-thermal   [35]  WU  W H,  YAO R M, HUANG X  Y, et al. Dual-encapsulation  of
                 conversion and thermal energy management composite phase change   octadecanol in thermal/electric conductor for enhanced thermoconductivity
                 material[J]. Polymers, 2018, 10(6): 585.          and efficient energy storage[J]. Materials Chemistry Frontiers, 2017,
            [16]  CAO R R,  CHEN S, ZHANG X X,  et al.  Functionalized carbon   1(7): 1430-1434.
   91   92   93   94   95   96   97   98   99   100   101