Page 117 - 《精细化工》2022年第5期
P. 117
第 5 期 靳紫梦,等: 超声波处理对大豆蛋白乳液凝胶特性及运载槲皮素性能的影响 ·971·
用和二硫键含量先上升后下降;乳液凝胶的硬度、 and interfacial adsorption of pea proteins[J]. Food Hydrocolloids,
2019, 88: 247-255.
弹性、咀嚼性均有所改善。超声波改性制备大豆分 [15] XI Z W, LIU W, MCCLEMENTS D J, et al. Rheological,structural,
and microstructural properties of ethanol induced cold-set whey
离蛋白乳液凝胶的最佳条件为:超声波功率 400 W, protein emulsion gels: Effect of oil content[J]. Food Chemistry, 2019,
超声波温度 55 ℃,超声波时间 30 min。(2)超声 291: 22-29.
[16] ZHANG M Q, LI J H, SU Y J, et al. Preparation and characterization
波改性处理导致大豆分离蛋白乳液的平均粒径下 of hen egg proteins-soybean protein isolate composite gels[J]. Food
Hydrocolloids, 2019, 97: 105191.
降、ζ-电位绝对值上升、界面蛋白含量上升、表观 [17] ZHU Y Q, CHEN X, MCCLEMENTS D J, et al. pH-, ion- and
黏度下降。(3)经过超声波处理后,大豆分离蛋白 temperature-dependent emulsion gels:Fabricated by addition of
whey protein to gliadin-nanoparticle coated lipid droplets[J]. Food
乳液凝胶的最终 G′提高,形成了更趋近于弹性性质 Hydrocolloids, 2018, 77: 870-878.
[18] MANTOVANI R A, FAZANI C A L, CUNHA R L. Gelation of
的凝胶材料,说明超声波改性能够提升大豆分离蛋 oil-in-water emulsions stabilized by whey protein[J]. Journal of Food
白乳液凝胶的凝胶质构特性,形成更加致密均匀的 Engineering, 2016, 175: 108-116.
[19] CHEN X, MCCLEMENTS D J, WANG J, et al. Coencapsulation of
凝胶网络结构。(4)与天然大豆分离蛋白槲皮素乳 (–)-epigallocatechin-3-gallate and quercetin in particle-stabilized
W/O/W emulsion gels: Controlled release and bioaccessibility[J]. Journal
液凝胶相比,超声波改性处理可以显著提高大豆分 of Agricultural and Food Chemistry, 2018, 66(14): 3691- 3699.
[20] CHEN X, MCCLEMENTS D J, ZHU Y Q, et al. Gastrointestinal fate
离蛋白乳液凝胶运载槲皮素的包封率,脂肪酸分解 of fluid and gelled nutraceutical emulsions: Impact on proteolysis,
率和生物利用率。 lipolysis, and quercetin bioaccessibility[J]. Journal of Agricultural
and Food Chemistry, 2018, 66(34): 9087-9096.
以上实验结果表明,超声波改性是提高大豆分 [21] LIU F, JIANG Y F, DU B J, et al. Design and characterization of
controlled-release edible packaging films prepared with synergistic
离蛋白乳液凝胶性质以及运载特性的可行途径。一 whey-protein polysaccharide complexes[J]. Journal of Agricultural
方面拓宽了乳液凝胶在食品领域的应用,另一方面 and Food Chemistry, 2013, 61(24): 5824-5833.
[22] PARK S, MUN S, KIM Y R, et al. Effect of xanthan gum on lipid
为乳液凝胶功能改进提供了理论基础。 digestion and bioaccessibility of beta-carotene-loaded rice starch-based
filled hydrogels[J]. Food Research International, 2018, 105: 440-445.
[23] DU X Q, HU M, LIU G N, et al. Development and evaluation of
参考文献: delivery systems for quercetin: A comparative study between coarse
[1] DICKINSON E. Emulsion gels: The structuring of soft solids with emulsion, nano-emulsion, high internal phase emulsion, and
protein-stabilized oil droplets[J]. Food Hydrocolloids, 2012, 28(1): emulsion gel[J]. Journal of Food Engineering, 2022, 314: 110784.
224-241. [24] ZHENG T, LI X H, TAHA A, et al. Effect of high intensity
[2] BRODKORB A, CROGUENNEC T, BOUHALLAB S, et al. ultrasound on the structure and physicochemical properties of soy
Heat-induced denaturation, aggregation and gelation of whey protein isolates produced by different denaturation methods[J]. Food
proteins[M]. New York: Springer New York, 2016. Hydrocolloids, 2019, 97: 105216.
[3] YU H L, HUANG Q R. Improving the oral bioavailability of [25] XIONG Y, LI Q R, MIAO S, et al. Effect of ultrasound on
curcumin using novel organogel-based nanoemulsions[J]. Journal of physicochemical properties of emulsion stabilized by fish
Agricultural and Food Chemistry, 2012, 60(21): 5373-5379. myofibrillar protein and xanthan gum[J]. Innovative Food Science &
[4] LUO X Q (罗贤清), CHEN J J (陈建军), HU B (胡斌), et al. The Emerging Technologies, 2019, 54: 225-234.
hitherto application of supersonic wave in food safety inspection[J]. [26] QIN X S, LUO S Z, CAI J, et al. Transglutaminase-induced gelation
Journal of Agricultural Mechanization Research (农业机械学报), properties of soy protein isolate and wheat gluten mixtures with high
2007, (9): 195-205. intensity ultrasonic pretreatment[J]. Ultrasonics Sonochemistry,
[5] WEN C T, ZHANG J X, YAO H, et al. Advances in renewable 2016, 31: 590-597.
plant-derived protein source: The structure, physicochemical [27] CHEN X M (陈晓敏). Study on characteristics and embedding
properties affected by ultrasonication[J]. Ultrasonics Sonochemistry, capability of bovine serum albumin cold-set gel[D]. Wuhan: Hubei
2018, 53: 83-98. University of Technology (湖北工业大学), 2019.
[6] HAO H, CHEUNG I W Y, PAN S Y, et al. Effect of high intensity [28] SUI X N, BI S, QI B K, et al. Impact of ultrasonic treatment on an
ultrasound on physicochemical and functional properties of emulsion system stabilized with soybean protein isolate and lecithin:
aggregated soybean β-conglycinin and glycinin[J]. Food Hydrocolloids, Its emulsifying property and emulsion stability[J]. Food Hydrocolloids,
2015, 45: 102-110. 2017, 63: 727-734.
[7] ZHAO C B, YIN H H, YAN J N, et al. Structure and acid-induced [29] FALADE E O, MU T H, ZHANG M. Improvement of ultrasound
gelation properties of soy protein isolate-maltodextrin glycation microwave-assisted enzymatic production and high hydrostatic
conjugates with ultrasonic pretreatment[J]. Food Hydrocolloids, pressure on emulsifying, rheological and interfacial characteristics of
2020, 112: 106278. sweet potato protein hydrolysates[J]. Food Hydrocolloids, 2021, 117:
[8] PAVLICEVIC M Z, TOMIC M, DJONLAGIC J A, et al. Evaluation 106684.
of variation in protein composition on solubility, emulsifying and [30] QAYUM A, CHEN W, MA L, et al. Characterization and comparison
gelling properties of soybean genotypes synthesizing β' subunit[J]. of α-lactalbumin pre- and post-emulsion[J]. Journal of Food
Journal of the American Oil Chemists Society, 2018, 95(2): 123-134. Engineering, 2020, 269: 109743.
[9] LI Y, LIU B H, JIANG L Z, et al. Interaction of soybean protein [31] SALA G, VLIET T V, STUART M C, et al. Deformation and fracture
isolate and phosphatidylcholine in nanoemulsions: A fluorescence of emulsion-filled gels: Effect of gelling agent concentration and oil
analysis[J]. Food Hydrocolloids, 2019, 87: 814-829. droplet size[J]. Food Hydrocolloids, 2009, 23(7): 1853-1863.
[10] MA T Y (马天怡), GUO F X (郭凤仙), HE Z D (何振东), et al. [32] YANG M, LIU F, TANG C H. Properties and microstructure of
L-Arginine/L-lysine ameliorating the emulsifying properties of soy transglutaminase-set soy protein-stabilized emulsion gels[J]. Food
protein isolate[J]. Fine Chemicals (精细化工); 2022, 40(1): 150-157, 163. Research International, 2013, 52(1): 409-418.
[11] ALAVI F, EMAM-DJOMEH Z, MOMEN S, et al. Fabrication and [33] QIN X S ( 秦新生 ). Studies on the mechanism, emulsifying
characterization of acid-induced gels from thermally-aggregated egg application of physical pretreatment and transglutaminase-set soy
white protein formed at alkaline condition[J]. Food Hydrocolloids, protein isolate and wheat gluten mixture gelation[D]. Hefei: Hefei
2019, 99: 105337. University of Technology (合肥工业大学), 2017.
[12] LUO K Y, LIU S T, MIAO S, et al. Effects of transglutaminase [34] LI Y, WANG D Q, ZHANG S, et al. Stability and in vitro simulated
pre-crosslinking on salt-induced gelation of soy protein isolate release characteristics of ultrasonically modified soybean lipophilic
emulsion[J]. Journal of Food Engineering, 2019, 263: 280-287. protein emulsion[J]. Food Function, 2020, 11(5): 3800-3810.
[13] GAO L (高丽). Studies on gel properties of soybean protein and its [35] RAO J J, DECKER E A, XIAO H, et al. Nutraceutical
applications [D]. Wuhan: Huazhong Agricultural University (华中农 nanoemulsions: Influence of carrier oil composition (digestible
业大学), 2007. versus indigestible oil) on beta-carotene bioavailability[J]. Journal of
[14] CHEN M S, LU J H, LIU F, et al. Study on the emulsifying stability the Science of Food and Argiculture, 2013, 93(13): 3175-3183.