Page 140 - 《精细化工》2022年第5期
P. 140
·994· 精细化工 FINE CHEMICALS 第 39 卷
[4] JI Y F, WANG L, JIANG M D, et al. The role of nitrite in sulfate
radical-based degradation of phenolic compounds: An unexpected
nitration process relevant to groundwater remediation by in-situ
chemical oxidation (ISCO)[J]. Water Research, 2017, 123: 249-257.
[5] CHEN C Y, WU Z H, ZHENG S S, et al. Comparative study for
interactions of sulfate radical and hydroxyl radical with phenol in the
图 9 UV/PS/CNTs 体系中一氯硝基苯酚的形成路径 presence of nitrite[J]. Environmental Science & Technology, 2020,
Fig. 9 Formation pathways of chloronitrophenols in UV/ 54: 8455-8463.
PS/CNTs system [6] ZHANG J (张进), LI X P (李小平), WANG C Y (王超英), et al.
Preparation of molecularly imprinted microgel and its adsorption
–
研究表明,在 NO 2 共存背景下,体系中氧活性 properties of 2, 4-dichlorophenol in water samples[J]. Technology of
Water Treatment (水处理技术), 2013, 39(10): 35-39.
–
物质主要通过电子转移的方式与 2,6-DCP 和 NO 2 反 [7] REN L, ZHANG J, LI Y, et al. Preparation and evaluation of cattail
应,产生较稳定的苯氧基自由基和•NO 2 。•NO 2 作为 fiber-based activated carbon for 2,4-dichlorophenol and 2,4,
6-trichlorophenol removal[J]. Chemical Engineering Journal, 2011,
亲电试剂,优先攻击酚类化合物羟基的邻位和对位, 168(2): 553-561.
与苯氧基反应后生成硝基副产物。 [8] MOUSSAVI G, GHODRATI S, MOHSENI-BANDPEI A. The
biodegradation and COD removal of 2-chlorophenol in a granular
anoxic baffled reactor[J]. Journal of Biotechnology, 2014, 184:
3 结论 111-117.
[9] MORALES J, HUTCHESON R, CHENG I F. Dechlorination of
UV/PS/CNTs 体系对 2,6-DCP 具有较好的协同 chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0)
particles[J]. Journal of Hazardous Materials, 2002, 90(1): 97-108.
降解潜能,对于 200 mL 0.05 mmol/L 的 2,6-DCP 水
[10] LEE H, LEE H J, JEONG J, et al. Activation of persulfates by carbon
–
溶液,在 NO 2 0.2 mmol/L,PS 0.5 mmol/L,CNTs nanotubes: Oxidation of organic compounds by nonradical
mechanism[J]. Chemical Engineering Journal, 2015, 266: 28-33.
投加量 50 mg/L,温度 25 ℃,反应时间 30 min 的
[11] CHENG X, GUO H G, ZHANG Y L, et al. Non-photochemical
条件下,2,6-DCP 降解率为 95.9%,表观反应速率常 production of singlet oxygen via activation of persulfate by carbon
–1
数为 0.1194 min 。 nanotubes[J]. Water Research, 2017, 113: 80-88.
[12] HU P D, SU H R, CHEN Z Y, et al. Selective degradation of organic
UV/PS/CNTs 体系对 2,6-DCP 的降解率随 PS 浓 pollutants using an efficient metal-free catalyst derived from
度与 CNTs 投加量的增大而增大,当 PS 与 CNTs 投 carbonized polypyrrole via peroxymonosulfate activation[J].
Environmental Science & Technology, 2017, 51: 11288-11296.
加量增大为 1.0 mmol/L 和 120 mg/L 时,2,6-DCP 降 [13] WANG Z (王郑), WANG J H (王佳豪), TIAN T (田湉), et al.
–
解率达 98.8%和 99.9%;NO 2 会抑制目标物的降解, Research progress on the application and mechanism of modified
–
反应速率常数随 NO 2 浓度的增大而减小;pH 为 9 时 biochar activated persulfate[J]. Fine Chemicals (精细化工), 2021,
38(7): 1305-1313.
该体系氧 化 降解效果 最 好 , 2,6-DCP 降解率达 [14] SUN H Q, LIU S Z, ZHOU G L, et al. Reduced graphene oxide for
99.8%,适用于中性及弱碱性环境的废水治理。 catalytic oxidation of aqueous organic pollutants[J]. ACS Applied
Materials & Interfaces, 2012, 4(10): 5466-5471.
CNTs 在 UV/PS/CNTs 体系中具有良好的循环使 [15] ZHOU Y (周阳), YING L Y (应路瑶), YU X (于欣), et al. Study on
用性,使用 5 次后仍具有较好的催化效果,2,6-DCP oxidative degradation of 2, 4-dichlorophenol by alkaline and thermal
co-activated sodium persulfate[J]. Technology of Water Treatment
降解率仍达 89.0%,催化性能稳定。该工艺受水质 (水处理技术), 2021, 47(3): 68-72.
成分影响较小,对成分复杂的实际水体处理效果较 [16] ZHU J (朱杰), LUO Q S (罗启仕), GUO L (郭琳), et al.
Remediation of chlorobenzene-contaminated waste water using a
好,2,6-DCP 降解率均达 90.0%以上,具有良好的实 combination of thermal- and alkaline-activated persulfate[J].
际应用潜力。 Environmental Chemistry (环境化学), 2013, 32(12): 2256-2262.
1 [17] CHENG X, GUO H G, ZHANG Y L, et al. Insights into the
UV/PS/CNTs 体系中 2,6-DCP 的降解遵循以 O 2
mechanism of nonradical reactions of persulfate activated by carbon
为主导的非自由基氧化途径,且在反应过程中,生 nanotubes: Activation performance and structure-function
成了 2-氯-4-硝基苯酚和 2-氯-6-硝基苯酚。 relationship[J]. Water Research, 2019, 157: 406-414.
[18] JI Y F (季跃飞), ZHAO X L (赵旭蕾), ZHANG T (张藤), et al.
Transformation of 4-chlorophenol and formation of chloronitrophenol
参考文献:
in a sulfate radical-based advanced oxidation process in the presence
[1] PAN Y (潘煜), SUN L P (孙力平), ZHANG T T (张婷婷), et al. of nitrite[J]. Environmental Chemistry (环境化学), 2020, 39(4):
Study on removal of 2,4-dichlorophenol by CMC modified nanoscale 852-858.
Fe/Cu bimetal[J]. Acta Scientiae Circumstantiae (环境科学学报), [19] CHEN J X (陈菊香), GAO N Y (高乃云), YANG J (杨静), et al.
2019, 39(1): 1174-1182. Study on the characteristics of 2, 4-dichlorophenol in water degraded
[2] LIU Z T (刘总堂), SUN Y F (孙玉凤), FEI Z H (费正皓), et al. by UV/PS[J]. China Environmental Science (中国环境科学), 2017,
Study on thermodynamics and kinetics of 2,6-dichlorophenol by acid 37(6): 2145-2149.
functional groups modified adsorption resin[J]. Ion Exchange and [20] YANG C H (杨成海), NING X A (宁寻安), LAI X J (赖晓君), et al.
Adsorption (离子交换与吸附), 2018, 34(2): 159-167. Degradation efficiency and mechanism of 2, 4-dichlorophenol by
[3] ZHAO X L, ZHANG T, LU J H, et al. Formation of activation of peroxymonosulfate with sulfur and nitrogen co-doped
chloronitrophenols upon sulfate radical-based oxidation of carbocatalysts[J]. Acta Scientiae Circumstantiae (环境科学学报),
2-chlorophenol in the presence of nitrite[J]. Environmental Pollution, 2021, 41(7): 2785-2795.
2020, 261: 114242. (下转第 1053 页)