Page 33 - 《精细化工》2022年第7期
P. 33
第 7 期 李小龙,等: 酞菁类化合物在有机光电探测领域的研究进展 ·1319·
[52] DAI Q Y, XU K, PENG Y Q, et al. Towards high performance Materials, 2020, 8(17): 2000519.
visible-blind narrowband near-infrared photodetectors with integrated [62] JOO C W, KIM J, MOON J, et al. High-performance fab-compatible
12
perovskite light filter[J]. Infrared Physics & Technology, 2020, 108: processed near-infrared organic thin-film photodiode with 3. 3×10
103358. Jones detectivity and 80% external quantum efficiency[J]. Organic
[53] CHOI M S, CHAE S, KIM H J, et al. Control of crystallinity in Electronics, 2019, 70: 101-106.
PbPc: C 60 blend film and application for inverted near-infrared [63] LV W L, PENG Y Q, ZHONG J K, et al. Near infrared sensitive
organic photodetector[J]. ACS Applied Materials & Interfaces, 2018, organic photodiode utilizing exciplex absorption in NdPc 2/C 60
10(30): 25614-25620. heterojunction[J]. IEEE Photonics Technology Letters, 2015, 27(19):
[54] FUJIMAKI Y, TADOKORO H, IKEUCHI S, et al. Near-infrared 2043-2046.
sensitive electrophotographic photoconductors using oxotitanium [64] FAROOQ A, KARIMOV K S, AHMED N, et al. Copper
phthalocyanine[J]. Journal of Imaging Technology, 1991, 17(5): phthalocyanine and metal free phthalocyanine bulk heterojunction
202-206. photodetector[J]. Physica B: Condensed Matter, 2015, 457: 17-21.
[55] YAMAGUCHI S, SASAKI Y. Primary carrier-generation process in [65] CHEN J, ZHU C J, XU Y, et al. Advances in phthalocyanine
Y-form and phase Ⅰ titanyl phthalocyanines[J]. Chemical Physics compounds and their photochemical and electro-chemical properties
Letters, 2000, 323(1/2): 35-42. [J]. Current Organic Chemistry, 2018, 22(5): 485-504.
[56] ENOKIDA T, HIROHASHI R, NAKAMURA T. Polymorphs of [66] SUN Y M, LIU Y Q, ZHU D B. Advances in organic field-effect
oxotitanium phthalocyanine and their applications for photoreceptors transistors[J]. Journal of Materials Chemistry, 2005, 15(1): 53-65.
[J]. Journal of Imaging Science, 1990, 34(6): 234-242. [67] KING B, MELVILLE O A, RICE N A, et al. Silicon phthalocyanines
[57] LI X L, WANG S R, XIAO Y, et al. A trap-assisted ultrasensitive for n-type organic thin-film transistors: Development of structure-
near-infrared organic photomultiple photodetector based on Y-type property relationships[J]. ACS Applied Electronic Materials, 2020,
titanylphthalocyanine nanoparticles[J]. Journal of Materials Chemistry 3(1): 325-336.
C, 2016, 4(24): 5584-5592. [68] WANG J B, LI W L, CHU B, et al. High speed responsive near
[58] KIRAN M R, ULLA H, SATYANARAYAN M N, et al. Optoelectronic infrared photodetector focusing on 808 nm radiation using
properties of hybrid diodes based on vanadyl-phthalocyanine and hexadecafluoro-copper-phthalocyanine as the acceptor[J]. Organic
zinc oxide nanorods thin films[J]. Optical Materials, 2019, 96: 109348. Electronics, 2011, 12(1): 34-38.
[59] DU L L, LUO X, ZHAO F Y, et al. Toward facile broadband high [69] NATH D, DEY P, JOSEPH A M, et al. Photocurrent generation under
photoresponse of fullerene based phototransistor from the ultraviolet forward bias with interfacial tunneling of carrier at pentacene/
to the near-infrared region[J]. Carbon, 2016, 96: 685-694. F 16CuPc heterojunction photodetector[J]. Journal of Alloys and
[60] KASAP S O. Optoelectronics and photonics: Principles and Compounds, 2020, 815: 152401.
practices[M]. New York: Pearson Education India, 2009. [70] ROSLAN N A, ABDULLAH S M, ABD MAJID W H, et al.
[61] LEE C C, ESTRADA R, LI Y Z, et al. Vacuum-processed small Investigation of VTP: PC 71BM organic composite as highly responsive
molecule organic photodetectors with low dark current density and organic photodetector[J]. Sensors and Actuators A: Physical, 2018,
strong response to near-infrared wavelength[J]. Advanced Optical 279: 361-366.
(上接第 1306 页) metal-organic frameworks under humid conditions by ligand
[83] DUKE M C, ZHU B, DOHERTY C M, et al. Structural effects on functionalization[J]. Langmuir, 2012, 28(49): 16874-16880.
SAPO-34 and ZIF-8 materials exposed to seawater solutions, and [91] TIAN Q, JIA X H, YANG J, et al. Polydopamine-stabilized ZIF-8:
their potential as desalination membranes[J]. Desalination, 2016, Improved water stability and lubrication performance[J]. Applied
377: 128-137. Surface Science, 2022, 578: 152120.
[84] ZHU Y Q, GUPTA K M, LIU Q, et al. Synthesis and seawater [92] QIU Z W, SHAO X, CHEN Y, et al. Enhanced water permeability
desalination of molecular sieving zeolitic imidazolate framework and rejection of As(Ⅲ) in groundwater by nanochannels and active
membranes[J]. Desalination, 2016, 385: 75-82. center formed in nanofibrillated celluloses UF membranes with
[85] ZHANG H F, ZHAO M, LIN Y S. Stability of ZIF-8 in water under ZIF-8[J]. Journal of Membrane Science, 2022, 646: 120255.
ambient conditions[J]. Microporous and Mesoporous Materials, [93] TANAKA S, TANAKA Y. A simple step toward enhancing
2019, 279: 201-210. hydrothermal stability of ZIF-8[J]. ACS Omega, 2019, 4(22): 19905-
[86] LIU X L, LI Y S, BAN Y J, et al. Improvement of hydrothermal 19912.
stability of zeolitic imidazolate frameworks[J]. Chemical [94] SON Y R, RYU S G, KIM H S. Rapid adsorption and removal of
Communications, 2013, 49(80): 9140-9142. sulfur mustard with zeolitic imidazolate frameworks ZIF-8 and ZIF-
[87] ESMAEILI M, KHORSHIDI S, VATANPOUR V. Stabilize thin 67[J]. Microporous and Mesoporous Materials, 2020, 293: 109819.
nanoparticle layer of zeolitic imidazole framework-8 (ZIF-8) on [95] HU C H, KANG S J, XIONG B Q, et al. Selective recovery of
different PVDF substrates by contra-diffusion method for high- Ag( Ⅰ ) from industrial wastewater using zeolite imidazolate
efficiency ultrafiltration application[J]. Journal of Industrial and framework-8: Performance and mechanisms[J]. Environmental
Engineering Chemistry, 2022, 109: 189-201. Science and Pollution Research, 2019, 26(14): 14214-14225.
[88] TAHERI M, ENGE T G, TSUZUKI T. Water stability of cobalt doped [96] ALINEJAD A, SADEGHI S, GHADERPOORI M, et al. High
ZIF-8: A quantitative study using optical analyses[J]. Materials adsorption of methylene blue from aqueous solutions using
Today Chemistry, 2020, 16: 100231. leaf-shaped ZIF-8[J]. International Journal of Environmental
[89] SHENG L, YANG F, WANG C Q, et al. Comparison of the Analytical Chemistry, 2021, 101(14): 2354-2367.
hydrothermal stability of ZIF-8 nanocrystals and polycrystalline [97] HUO J B, XU L, YANG J C E, et al. Magnetic responsive Fe 3O 4-
membranes derived from zinc salt variations[J]. Materials Letters, ZIF-8 core-shell composites for efficient removal of As(Ⅲ) from
2017, 197: 184-187. water[J]. Colloids and Surfaces A: Physicochemical and Engineering
[90] JASUJA H, HUANG Y G, WALTON K S. Adjusting the stability of Aspects, 2018, 539: 59-68.