Page 52 - 《精细化工》2022年第7期
P. 52
·1338· 精细化工 FINE CHEMICALS 第 39 卷
型黏结剂的研究以及其产业化应用都将是今后锂离 and reprocessable rubbers[J]. Chemical Engineering Journal, 2019,
358: 878-890.
子电池硅基负极黏结剂发展的重要方向。
[22] JIAO X X, YIN J Q, XU X Y, et al. Highly energy issipative, fast
self-healing binder for stable Si anode in lithium on batteries[J].
参考文献: Advanced Functional Materials, 2021, 31(3): 2005699.
[1] LIU J, KOPOLD P, VAN AKEN P A, et al. Energy storage materials [23] RAJEEV K K, NAM J, KIM E, et al. A self-healable polymer binder for
from nature through nanotechnology: A sustainable route from reed Si anodes based on reversible Diels-Alder chemistry[J]. Electrochimica
plants to a silicon anode for lithium-ion batteries[J]. Angewandte Acta, 2020, 364: 137311.
Chemie, 2015, 127(33): 9768-9772. [24] GENDENSUREN B, OH E S. Dual-crosslinked network binder of
[2] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion alginate with polyacrylamide for silicon/graphite anodes of lithium
batteries with high energy densities[J]. Nature Reviews Materials, ion battery[J]. Journal of Power Sources, 2018, 384: 379-386.
2016, 1(4): 1-16. [25] ZENG W, WANG L, PENG X, et al. Enhanced ion conductivity in
[3] SUN Y, LIU N, CUI Y. Promises and challenges of nanomaterials for conducting polymer binder for high-performance silicon anodes in
lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018,
1-12. 8(11): 1702314.
[4] OBROVAC M N, CHRISTENSEN L. Structural changes in silicon [26] MA Y, MA J, CUI G. Small things make big deal: Powerful binders
anodes during lithium insertion/extraction[J]. Electrochemical and of lithium batteries and post-lithium batteries[J]. Energy Storage
Solid-State Letters, 2004, 7(5): A93. Materials, 2019, 20: 146-175.
[5] ASHURI M, HE Q R, SHAW L L. Silicon as a potential anode material [27] KWON T, CHOI J W, COSKUN A. The emerging era of supramolecular
for Li-ion batteries: Where size, geometry and structure matter[J]. polymeric binders in silicon anodes[J]. Chemical Society Reviews,
Nanoscale, 2016, 8(1): 74-103. 2018, 47(6): 2145-2164.
[6] WU J X, QIN X Y, ZHANG H R, et al. Multilayered silicon embedded [28] ZHANG G, YANG Y, CHEN Y, et al. A quadruple-hydrogen-bonded
porous carbon/graphene hybrid film as a high performance anode[J]. supramolecular binder for high-performance silicon anodes in lithium-
Carbon, 2015, 84: 434-443. ion batteries[J]. Small, 2018, 14(29): 1801189.
[7] LUO Z P, XIAO Q Z, LEI G T, et al. Si nanoparticles/graphene [29] LEE K, KIM T H. Poly (aniline-co-anthranilic acid) as an electrically
composite membrane for high performance silicon anode in lithium conductive and mechanically stable binder for high-performance
ion batteries[J]. Carbon, 2016, 98: 373-380. silicon anodes[J]. Electrochimica Acta, 2018, 283: 260- 268.
[8] SHANG H, ZUO Z C, YU L, et al. Low-temperature growth of all- [30] ZHANG C, CHEN Q, AI X, et al. Conductive polyaniline doped
carbon graphdiyne on a silicon anode for high-performance lithium- with phytic acid as binder and conductive additive for commercial
ion batteries[J]. Advanced Materials, 2018, 30(27): 1801459. silicon anode with enhanced lithium storage properties[J]. Journal of
[9] FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion Materials Chemistry A, 2020, 8(32): 16323-16331.
batteries: From fundamentals to practical applications[J]. Small, 2018, [31] SHAO D, ZHONG H, ZHANG L. Water-soluble conductive composite
14(8): 1702737. binder containing PEDOT︰PSS as conduction promoting agent for
[10] ZHANG L, RAJAGOPALAN R, GUO H P, et al. A green and facile Si anode of lithium-ion batteries[J]. ChemElectroChem, 2014, 1(10):
way to prepare granadilla-like silicon-based anode materials for Li-ion 1679-1687.
batteries[J]. Advanced Functional Materials, 2016, 26(3): 440-446. [32] ZENG W W, WANG L, PENG X, et al. Enhanced ion conductivity in
[11] LUAN Y G, ZHANG X A, JIANG S L, et al. Self-healing supramolecular conducting polymer binder for high-performance silicon anodes in
polymer composites by hydrogen bonding interactions between advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018:
hyperbranched polymer and graphene oxide[J]. Chinese Journal of 1702314.
Polymer Science, 2018, 36(5): 584-591. [33] TANG R X, MA L, ZHANG Y, et al. A flexible and conductive binder
[12] WOJTECKI R J, MEADOR M A, ROWAN S J. Using the dynamic with strong adhesion for high performance silicon-based lithium-ion
bond to access macroscopically responsive structurally dynamic battery anode[J]. ChemElectroChem, 2020, 7(9): 1992-2000.
polymers[J]. Nature Materials, 2011, 10(1): 14-27. [34] LIU X, ZAI J, IQBAL A, et al. Glycerol-crosslinked PEDOT∶PSS
[13] ZHU D, YE Q, LU X, et al. Self-healing polymers with PEG oligomer as bifunctional binder for Si anodes: Improved interfacial compatibility
side chains based on multiple H-bonding and adhesion properties[J]. and conductivity[J]. Journal of Colloid and Interface Science, 2020,
Polymer Chemistry, 2015, 6(28): 5086-5092. 565: 270-277.
[14] ZHANG X J, HE J H. Hydrogen-bonding-supported self-healing [35] LIU G, XUN S, VUKMIROVIC N, et al. Polymers with tailored
antifogging thin films[J]. Scientific Reports, 2015, 5: 9227. electronic structure for high capacity lithium battery electrodes[J].
[15] HENTSCHEL J, KUSHNER A M, ZILLER J, et al. Self-healing Advanced Materials, 2011, 23(40): 4679-4683.
supramolecular block copolymers[J]. Angewandte Chemie-International [36] LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-
Edition, 2012, 51(42): 10561-10565. performance silicon anodes in lithium ion batteries[J]. Nano Energy,
[16] WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder 2017, 36: 206-212.
for silicon anodes with high mass loading in lithium-ion batteries[J]. [37] ZHAO Y, YANG L, ZUO Y, et al. Conductive binder for Si anode
Energy Storage Materials, 2021, 38: 121-129. with boosted charge transfer capability via n-type doping[J]. ACS
[17] HAO C, WU Z Z, SU Z, et al. A mechanically robust self-healing Applied Materials & Interfaces, 2018, 10: 27795-27800.
binder for silicon anode in lithium ion batteries[J]. Nano Energy, [38] PARK S J, HUI Z, AI G, et al. Side-chain conducting and phase-
2020, 81: 105654. separated polymeric binders for high-performance silicon anodes in
[18] XU Z, YANG J, ZHANG T, et al. Silicon microparticle anodes with lithium-ion batteries[J]. Journal of the American Chemical Society,
self-healing multiple network binder[J]. Joule, 2018, 2(5): 950-961. 2015, 137(7): 2565.
[19] LI C H, ZUO J L. Self-healing polymers based on coordination bonds [39] YE Q, ZHENG P, AO X, et al. Novel multi-block conductive binder
[J]. Advanced Materials, 2020, 32(27): 1903762. with polybutadiene for Si anodes in lithium-ion batteries[J].
[20] YOU K J, CHOI J W. Mussel-inspired self-healing metallopolymers Electrochimica Acta, 2019, 315: 58-66.
for silicon nanoparticle anodes[J]. ACS Nano, 2019, 13(7): 8364- [40] LIU H, CHEN T Q, XU Z X, et al. High-safety and long-life silicon-
8373. based lithium-ion batteries via a multifunctional binder[J]. ACS
[21] XIANG H P, YIN J F, LIN G H, et al. Photo-crosslinkable, self-healable Applied Materials & Interfaces, 2020, 12(49): 54842-548.