Page 52 - 《精细化工》2022年第7期
P. 52

·1338·                            精细化工   FINE CHEMICALS                                 第 39 卷

            型黏结剂的研究以及其产业化应用都将是今后锂离                                 and reprocessable rubbers[J]. Chemical Engineering Journal, 2019,
                                                                   358: 878-890.
            子电池硅基负极黏结剂发展的重要方向。
                                                               [22]  JIAO X X, YIN J Q, XU X Y, et al. Highly energy issipative, fast
                                                                   self-healing binder for stable Si anode in lithium on batteries[J].
            参考文献:                                                  Advanced Functional Materials, 2021, 31(3): 2005699.
            [1]   LIU J, KOPOLD P, VAN AKEN P A, et al. Energy storage materials   [23]  RAJEEV K K, NAM J, KIM E, et al. A self-healable polymer binder for
                 from nature through nanotechnology: A sustainable route from reed   Si anodes based on reversible Diels-Alder chemistry[J]. Electrochimica
                 plants  to a silicon anode for lithium-ion batteries[J]. Angewandte   Acta, 2020, 364: 137311.
                 Chemie, 2015, 127(33): 9768-9772.             [24]  GENDENSUREN B, OH E S. Dual-crosslinked  network binder  of
            [2]   CHOI J W, AURBACH D. Promise and reality of post-lithium-ion   alginate with polyacrylamide for silicon/graphite anodes of lithium
                 batteries with high energy densities[J].  Nature Reviews  Materials,   ion battery[J]. Journal of Power Sources, 2018, 384: 379-386.
                 2016, 1(4): 1-16.                             [25]  ZENG W, WANG L, PENG X, et al. Enhanced ion conductivity in
            [3]   SUN Y, LIU N, CUI Y. Promises and challenges of nanomaterials for   conducting polymer binder for high-performance silicon anodes in
                 lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7):   advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018,
                 1-12.                                             8(11): 1702314.
            [4]   OBROVAC M N, CHRISTENSEN L. Structural changes in silicon   [26]  MA Y, MA J, CUI G. Small things make big deal: Powerful binders
                 anodes during lithium insertion/extraction[J]. Electrochemical  and   of lithium batteries and post-lithium batteries[J]. Energy Storage
                 Solid-State Letters, 2004, 7(5): A93.             Materials, 2019, 20: 146-175.
            [5]   ASHURI M, HE Q R, SHAW L L. Silicon as a potential anode material   [27]  KWON T, CHOI J W, COSKUN A. The emerging era of supramolecular
                 for Li-ion batteries: Where size, geometry and structure matter[J].   polymeric binders in silicon anodes[J]. Chemical Society  Reviews,
                 Nanoscale, 2016, 8(1): 74-103.                    2018, 47(6): 2145-2164.
            [6]   WU J X, QIN X Y, ZHANG H R, et al. Multilayered silicon embedded   [28]  ZHANG G, YANG Y, CHEN Y, et al. A quadruple-hydrogen-bonded
                 porous carbon/graphene hybrid film as a high performance anode[J].   supramolecular binder for high-performance silicon anodes in lithium-
                 Carbon, 2015, 84: 434-443.                        ion batteries[J]. Small, 2018, 14(29): 1801189.
            [7]   LUO Z P, XIAO  Q Z, LEI G T,  et al. Si nanoparticles/graphene   [29]  LEE K, KIM T H. Poly (aniline-co-anthranilic acid) as an electrically
                 composite membrane for high performance silicon anode in lithium   conductive and mechanically stable  binder for high-performance
                 ion batteries[J]. Carbon, 2016, 98: 373-380.      silicon anodes[J]. Electrochimica Acta, 2018, 283: 260- 268.
            [8]   SHANG H, ZUO Z C, YU L, et al. Low-temperature growth of all-   [30]  ZHANG  C, CHEN Q, AI X, et al. Conductive polyaniline doped
                 carbon graphdiyne on a silicon anode for high-performance lithium-   with phytic acid as binder and conductive additive for commercial
                 ion batteries[J]. Advanced Materials, 2018, 30(27): 1801459.   silicon anode with  enhanced lithium storage properties[J].  Journal of
            [9]   FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion   Materials Chemistry A, 2020, 8(32): 16323-16331.
                 batteries: From fundamentals to practical applications[J]. Small, 2018,   [31]  SHAO D, ZHONG H, ZHANG L. Water-soluble conductive composite
                 14(8): 1702737.                                   binder containing PEDOT︰PSS as conduction promoting agent for
            [10]  ZHANG L, RAJAGOPALAN R, GUO H P, et al. A green and facile   Si anode of lithium-ion batteries[J]. ChemElectroChem, 2014, 1(10):
                 way to prepare granadilla-like silicon-based anode materials for Li-ion   1679-1687.
                 batteries[J]. Advanced Functional Materials, 2016, 26(3): 440-446.   [32]  ZENG W W, WANG L, PENG X, et al. Enhanced ion conductivity in
            [11]  LUAN Y G, ZHANG X A, JIANG S L, et al. Self-healing supramolecular   conducting polymer binder for high-performance silicon anodes in
                 polymer composites by hydrogen  bonding  interactions between   advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018:
                 hyperbranched polymer and graphene  oxide[J]. Chinese Journal of   1702314.
                 Polymer Science, 2018, 36(5): 584-591.        [33]  TANG R X, MA L, ZHANG Y, et al. A flexible and conductive binder
            [12]  WOJTECKI R J, MEADOR M A, ROWAN S J. Using the dynamic   with strong adhesion for high performance silicon-based lithium-ion
                 bond to access macroscopically responsive structurally dynamic   battery anode[J]. ChemElectroChem, 2020, 7(9): 1992-2000.
                 polymers[J]. Nature Materials, 2011, 10(1): 14-27.   [34]  LIU X, ZAI J, IQBAL A, et al. Glycerol-crosslinked PEDOT∶PSS
            [13]  ZHU D, YE Q, LU X, et al. Self-healing polymers with PEG oligomer   as bifunctional binder for Si anodes: Improved interfacial compatibility
                 side chains based on multiple H-bonding and adhesion properties[J].   and conductivity[J]. Journal of Colloid and Interface Science, 2020,
                 Polymer Chemistry, 2015, 6(28): 5086-5092.        565: 270-277.
            [14]  ZHANG  X J, HE J H. Hydrogen-bonding-supported  self-healing   [35]  LIU G, XUN S, VUKMIROVIC N,  et al. Polymers with tailored
                 antifogging thin films[J]. Scientific Reports, 2015, 5: 9227.   electronic structure for high capacity  lithium battery electrodes[J].
            [15]  HENTSCHEL J, KUSHNER  A M, ZILLER J,  et al. Self-healing   Advanced Materials, 2011, 23(40): 4679-4683.
                 supramolecular block copolymers[J]. Angewandte Chemie-International   [36]  LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-
                 Edition, 2012, 51(42): 10561-10565.               performance silicon anodes in lithium ion batteries[J]. Nano Energy,
            [16]  WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder   2017, 36: 206-212.
                 for silicon anodes with high mass loading in lithium-ion batteries[J].   [37]  ZHAO Y, YANG L, ZUO Y, et al. Conductive binder for Si anode
                 Energy Storage Materials, 2021, 38: 121-129.      with boosted charge  transfer  capability  via n-type doping[J].  ACS
            [17]  HAO C, WU Z Z, SU Z, et al. A mechanically robust self-healing   Applied Materials & Interfaces, 2018, 10: 27795-27800.
                 binder for silicon anode in lithium ion batteries[J]. Nano Energy,   [38]  PARK S J, HUI Z,  AI G,  et al. Side-chain conducting and  phase-
                 2020, 81: 105654.                                 separated polymeric binders for high-performance silicon anodes in
            [18]  XU Z, YANG J, ZHANG T, et al. Silicon microparticle anodes with   lithium-ion batteries[J]. Journal of the American Chemical Society,
                 self-healing multiple network binder[J]. Joule, 2018, 2(5): 950-961.   2015, 137(7): 2565.
            [19]  LI C H, ZUO J L. Self-healing polymers based on coordination bonds   [39]  YE Q, ZHENG P, AO X, et al. Novel multi-block conductive binder
                 [J]. Advanced Materials, 2020, 32(27): 1903762.   with polybutadiene for Si anodes in lithium-ion  batteries[J].
            [20]  YOU K J, CHOI J W. Mussel-inspired self-healing metallopolymers   Electrochimica Acta, 2019, 315: 58-66.
                 for silicon nanoparticle anodes[J]. ACS Nano, 2019, 13(7): 8364-   [40]  LIU H, CHEN T Q, XU Z X, et al. High-safety and long-life silicon-
                 8373.                                             based lithium-ion  batteries via a  multifunctional binder[J]. ACS
            [21]  XIANG H P, YIN J F, LIN G H, et al. Photo-crosslinkable, self-healable   Applied Materials & Interfaces, 2020, 12(49): 54842-548.
   47   48   49   50   51   52   53   54   55   56   57