Page 94 - 《精细化工》2022年第9期
P. 94

·1812·                            精细化工   FINE CHEMICALS                                 第 39 卷

            然后与壳聚糖季铵盐通过静电作用制备了一种具有                             [18]  LIU L H, DAI J N, JI Y, et al. Detection of protamine and heparin
                                                                   using a promising metal organic frameworks based fluorescent
            AIE 效应的自组装复合探针。复合物加入肝素后,                               molecular device BZA-BOD@ZIF-90[J]. Sensors and Actuators B:
                                                                   Chemical, 2021, 341(8): 130006.
            壳聚糖季铵盐会优先和肝素相结合,从而释放出                              [19]  APARNA R S, ANJALI DEVI J S, ANJANA R R, et al. Reversible
            AIE 荧光体使体系荧光强度降低。同时,采用 FTIR、                           fluorescence  modulation of BSA stabilised copper nanoclusters  for
            1                                                      the selective detection of protamine and heparin[J]. Analyst, 2019,
             HNMR、电位分析仪、荧光分光光度计等对复合物进                              144(5): 1799-1808.
                                                               [20]  WANG W J, XUE C H, MAO X Z. Chitosan: Structural modification,
            行了表征。结果表明,在复合物中加入肝素能使其荧                                biological activity and application[J]. International  Journal of
            光强度下降,从而可以实现对肝素的定量检测。复合                                Biological Macromolecules, 2020, 164(12): 4532-4546.
                                                               [21]  NEGM N A, HEFNI H H H, ABD-ELAAL A A A, et al. Advancement on
            物检测肝素的方法不但具有较好的选择性,而且具有                                modification of  chitosan biopolymer and its potential applications[J].
            较低检测限和较宽检测范围。与其他检测肝素的探针                                International Journal of Biological Macromolecules, 2020, 152(6):
                                                                   681-702.
            相比,利用天然多糖构建复合物探针可赋予荧光探针                            [22]  LIN Y, ZHANG L Z, YAO W, et al. Water-soluble chitosan-quantum
                                                                   dot hybrid nanospheres toward bioimaging and biolabeling[J]. ACS
            较好的可降解性及生物相容性,同时也为天然多糖的                                Applied Materials & Interfaces, 2011, 3(4): 995-1002.
            应用开拓了新思路。另外,本工作为壳聚糖基 AIE 复                         [23]  MOUSSA S H, TAYEL A A, AL-TURKI A I. Evaluation of fungal
                                                                   chitosan as a biocontrol and antibacterial agent using fluorescence-
            合物用于临床中肝素的检测提供了研究基础。                                   labeling[J]. International Journal of  Biological Macromolecules,
                                                                   2013, 54(3): 204-208.
                                                               [24]  LAI S J, CHANG X J, FU C. Cadmium sulfide quantum dots modified by
            参考文献:                                                  chitosan as fluorescence probe for copper  (Ⅱ) ion determination[J].
            [1]   GAMA C I, HSIEH-WILSON L C. Chemical approaches to deciphering   Microchimica Acta, 2008, 165(1): 39-44.
                 the glycosaminoglycan code[J]. Current Opinion in Chemical Biology,   [25]  LI H Y, CHANG J F, HOU T, et al. Aggregation induced emission
                 2005, 9(6): 609-619.                              amphiphile with an ultra low critical micelle concentration: Fabrication,
            [2]   QI Y Y, HE J H, XIU F R, et al. A facile chemiluminescence sensing   self assembling, and cell imaging[J]. Journal of Materials Chemistry
                 for ultrasensitive detection of heparin using charge effect of positively-   B, 2016, 4(2): 198-201.
                 charged AuNPs[J]. Spectrochimica Acta Part A: Molecular and   [26]  YE X, WANG H, YU L, et al. Aggregation-induced emission (AIE)-
                 Biomolecular Spectroscopy, 2019, 216(5): 310-318.       labeled cellulose nanocrystals for the detection of nitrophenolic
            [3]   MENDE M, BEDNAREK C, WAWRYSZYN M, et  al. Chemical   explosives in aqueous solutions[J]. Nanomaterials, 2019, 9(5): 707-721.
                 synthesis of glycosaminoglycans[J]. Chemical Reviews, 2016, 116(14):   [27]  LIU G J, TIAN S N, LI C Y, et al. Aggregation-induced-emission
                 8193-8255.                                        materials with different electric charges as  an artificial tongue:
            [4]   BJÖRK I, LINDAHL U. Mechanism of the anticoagulant action of   Design, construction, and assembly with various pathogenic bacteria
                 heparin[J]. Molecular and Cellular Biochemistry, 1982, 48(3): 161-182.       for effective bacterial imaging and discrimination[J]. ACS Applied
            [5]   ARIYOSHI W, TAKAHASHI T, KANNO T, et al. Heparin inhibits   Materials & Interfaces, 2017, 9(34): 28331-28338.
                 osteoclastic differentiation and function[J]. Journal  of Cellular   [28]  LUO H, REN X K, ZHANG B H, et al. Synthesis and properties of
                 Biotechnology, 2008, 103(6): 1707-1717.           tetraphenylethylene derivatives with  different chiral substituents:
            [6]   MELLO G, PARRETTI E, FATINI C, et al. Low-molecular-weight   From helical supermolecular structure to circularly polarized
                 heparin lowers the recurrence rate of preeclampsia and restores the   luminescence[J]. Dyes and Pigments, 2021, 188(4): 109148-109153.
                 physiological vascular changes in angiotensin-converting enzyme   [29]  SHI J, ZHANG S, ZHENG M M, et al. A novel fluorometric turn-on
                 DD women[J]. Hypertension, 2005, 45(1): 86-91.       assay for lipase activity based on an aggregation-induced emission
            [7]   BRAATZ E, SESARTIC V, LISKA J. Will high-dose heparin affect   (aie) luminogen[J]. Sensors and Actuators B: Chemical, 2017, 238(1):
                 blood loss and inflammatory response in patients  undergoing   765-771.
                 cardiopulmonary bypass?[J]. Perfusion, 2021, 36(1): 63-69.       [30]  YANG Z,  FAN X, CHENG  W,  et al.  AIE nanoassemblies for
            [8]   CUKER A, CINES D B. How I treat heparin-induced thrombocytopenia[J].   discrimination of glycosaminoglycans and heparin quality control[J].
                 Blood, 2012, 119(10): 2209-2218.                  Analytical Chemistry, 2019, 91(15): 10295-10301.
            [9]   SUN X J, LIN L,  LIU X Y, et  al. Capillary electrophoresis-mass   [31]  LI Q Y, WU  Y H, LU H, et al. Construction  of supramolecular
                 spectrometry for the analysis of heparin oligosaccharides and low   nanoassembly for  responsive bacterial elimination and effective
                 molecular  weight heparin[J]. Analytical  Chemistry, 2016, 88(3):   bacterial detection [J]. ACS Applied  Materials & Interfaces, 2017,
                 1937-1943.                                        9(11): 10180-10189.
            [10]  LIAO H, LIU Y, CHEN M, et al. A colorimetric heparin assay based   [32]  CAO  Y  L, SHI S, WANG L L, et al. Ultrasensitive fluorescence
                 on the inhibition of the oxidase mimicking activity of cerium oxide   detection of heparin based on quantum dots and a functional ruthenium
                 nanoparticles[J]. Mikrochim Acta, 2019, 186(5): 274-280.   polypyridyl complex[J]. Biosensors and Bioelectronics, 2014, 55(12):
            [11]  TIAN L, ZHAO  H S, ZHAO Z  Z, et al. A facile voltammetric   174-179.
                 method for  detection of  heparin  in plasma based on the   [33]  JIANG R, ZHAO  S, CHEN L K,  et al. Fluorescence detection  of
                 polyethylenimine modified electrode[J]. Analytical Methods, 2019,   protamine, heparin and heparinase  Ⅱ  based on a novel aie molecule
                 11(10): 1324-1330.                                with four carboxyl[J]. International Journal of Biological Macromolecules,
            [12]  YANG M D, CHEN J,  ZHOU H  P, et al. Polycation-induced   2020, 156(8): 1153-1159.
                 benzoperylene probe excimer formation and the ratiometric detection   [34]  LI S W, GAO M, WANG S X, et al. Light up detection of heparin
                 of heparin and heparinase[J]. Biosensors and Bioelectronics, 2016,   based on aggregation-induced emission and synergistic counter ion
                 75(1): 404-410.                                   displacement[J]. Chem Communs, 2017, 53(35): 4795-4798.
            [13]  QIAO Y D, YAO Z Y, GE W Q, et al. Rapid and visual detection of heparin   [35]  ZHANG Z P, LI S, HUANG P C, et al. Colorimetric and fluorometric
                 based on the disassembly of polyelectrolyte-induced pyrene excimers[J].   aggregation-based heparin assay by using gold nanoclusters and gold
                 Organic & Biomolecular Chemistry, 2017, 15(12): 2569-2574.       nanoparticles[J]. Mikrochim Acta, 2019, 186(12): 790-798.
            [14]  BAYRAKTUTAN  T, BAYRAKTUTAN O F. A novel turn  on   [36]  PANG S, LIU S  Y, SU X G. A fluorescence assay for the trace
                 fluorescence sensor for determination enoxaparin, a low  molecular   detection of protamine and heparin[J]. RSC Advances, 2014, 4(49):
                 weight heparin[J]. Journal of Fluorescence, 2020, 30(6): 1591-1599.       25857-25862.
            [15]  CAO  Y  L, SHI S, WANG L L, et al. Ultrasensitive fluorescence   [37]  LIU H L, SONG P S, WEI R R, et al. A facile, sensitive and selective
                 detection  of  heparin  based on quantum dots and a  functional   fluorescent probe for heparin based on aggregation-induced
                 ruthenium polypyridyl complex[J]. Biosensors and Bioelectronics,   emission[J]. Talanta, 2014, 118(15): 348-352.
                 2014, 55(5): 174-179.                         [38]  GAO Y X, WEI K L, LI J Z, et al. A facile four-armed aie fluorescent
            [16]  LIU J H, LI Y, LIU L, et al. Current progress on antibiotic sensing   sensor for heparin and protamine[J]. Sensors and Actuators B:
                 based  on  ratiometric fluorescent sensors[J]. Bulletin  of Environmental   Chemical, 2018, 277(20): 408-414.
                 Contamination and Toxicology, 2021, 107(2): 176-184.       [39]  WEI W, WANG H J, JIANG C Q. Spectrofluorimetric determination
            [17]  LUO J,  XIE Z, LAM J W, et al. Aggregation-induced emission of   of trace heparin using lomefloxacin-terbium probe[J]. Spectrochimica
                 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications,   Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 63(2):
                 2001, 18(8): 1740-1741.                           241-246.
   89   90   91   92   93   94   95   96   97   98   99