Page 94 - 《精细化工》2022年第9期
P. 94
·1812· 精细化工 FINE CHEMICALS 第 39 卷
然后与壳聚糖季铵盐通过静电作用制备了一种具有 [18] LIU L H, DAI J N, JI Y, et al. Detection of protamine and heparin
using a promising metal organic frameworks based fluorescent
AIE 效应的自组装复合探针。复合物加入肝素后, molecular device BZA-BOD@ZIF-90[J]. Sensors and Actuators B:
Chemical, 2021, 341(8): 130006.
壳聚糖季铵盐会优先和肝素相结合,从而释放出 [19] APARNA R S, ANJALI DEVI J S, ANJANA R R, et al. Reversible
AIE 荧光体使体系荧光强度降低。同时,采用 FTIR、 fluorescence modulation of BSA stabilised copper nanoclusters for
1 the selective detection of protamine and heparin[J]. Analyst, 2019,
HNMR、电位分析仪、荧光分光光度计等对复合物进 144(5): 1799-1808.
[20] WANG W J, XUE C H, MAO X Z. Chitosan: Structural modification,
行了表征。结果表明,在复合物中加入肝素能使其荧 biological activity and application[J]. International Journal of
光强度下降,从而可以实现对肝素的定量检测。复合 Biological Macromolecules, 2020, 164(12): 4532-4546.
[21] NEGM N A, HEFNI H H H, ABD-ELAAL A A A, et al. Advancement on
物检测肝素的方法不但具有较好的选择性,而且具有 modification of chitosan biopolymer and its potential applications[J].
较低检测限和较宽检测范围。与其他检测肝素的探针 International Journal of Biological Macromolecules, 2020, 152(6):
681-702.
相比,利用天然多糖构建复合物探针可赋予荧光探针 [22] LIN Y, ZHANG L Z, YAO W, et al. Water-soluble chitosan-quantum
dot hybrid nanospheres toward bioimaging and biolabeling[J]. ACS
较好的可降解性及生物相容性,同时也为天然多糖的 Applied Materials & Interfaces, 2011, 3(4): 995-1002.
应用开拓了新思路。另外,本工作为壳聚糖基 AIE 复 [23] MOUSSA S H, TAYEL A A, AL-TURKI A I. Evaluation of fungal
chitosan as a biocontrol and antibacterial agent using fluorescence-
合物用于临床中肝素的检测提供了研究基础。 labeling[J]. International Journal of Biological Macromolecules,
2013, 54(3): 204-208.
[24] LAI S J, CHANG X J, FU C. Cadmium sulfide quantum dots modified by
参考文献: chitosan as fluorescence probe for copper (Ⅱ) ion determination[J].
[1] GAMA C I, HSIEH-WILSON L C. Chemical approaches to deciphering Microchimica Acta, 2008, 165(1): 39-44.
the glycosaminoglycan code[J]. Current Opinion in Chemical Biology, [25] LI H Y, CHANG J F, HOU T, et al. Aggregation induced emission
2005, 9(6): 609-619. amphiphile with an ultra low critical micelle concentration: Fabrication,
[2] QI Y Y, HE J H, XIU F R, et al. A facile chemiluminescence sensing self assembling, and cell imaging[J]. Journal of Materials Chemistry
for ultrasensitive detection of heparin using charge effect of positively- B, 2016, 4(2): 198-201.
charged AuNPs[J]. Spectrochimica Acta Part A: Molecular and [26] YE X, WANG H, YU L, et al. Aggregation-induced emission (AIE)-
Biomolecular Spectroscopy, 2019, 216(5): 310-318. labeled cellulose nanocrystals for the detection of nitrophenolic
[3] MENDE M, BEDNAREK C, WAWRYSZYN M, et al. Chemical explosives in aqueous solutions[J]. Nanomaterials, 2019, 9(5): 707-721.
synthesis of glycosaminoglycans[J]. Chemical Reviews, 2016, 116(14): [27] LIU G J, TIAN S N, LI C Y, et al. Aggregation-induced-emission
8193-8255. materials with different electric charges as an artificial tongue:
[4] BJÖRK I, LINDAHL U. Mechanism of the anticoagulant action of Design, construction, and assembly with various pathogenic bacteria
heparin[J]. Molecular and Cellular Biochemistry, 1982, 48(3): 161-182. for effective bacterial imaging and discrimination[J]. ACS Applied
[5] ARIYOSHI W, TAKAHASHI T, KANNO T, et al. Heparin inhibits Materials & Interfaces, 2017, 9(34): 28331-28338.
osteoclastic differentiation and function[J]. Journal of Cellular [28] LUO H, REN X K, ZHANG B H, et al. Synthesis and properties of
Biotechnology, 2008, 103(6): 1707-1717. tetraphenylethylene derivatives with different chiral substituents:
[6] MELLO G, PARRETTI E, FATINI C, et al. Low-molecular-weight From helical supermolecular structure to circularly polarized
heparin lowers the recurrence rate of preeclampsia and restores the luminescence[J]. Dyes and Pigments, 2021, 188(4): 109148-109153.
physiological vascular changes in angiotensin-converting enzyme [29] SHI J, ZHANG S, ZHENG M M, et al. A novel fluorometric turn-on
DD women[J]. Hypertension, 2005, 45(1): 86-91. assay for lipase activity based on an aggregation-induced emission
[7] BRAATZ E, SESARTIC V, LISKA J. Will high-dose heparin affect (aie) luminogen[J]. Sensors and Actuators B: Chemical, 2017, 238(1):
blood loss and inflammatory response in patients undergoing 765-771.
cardiopulmonary bypass?[J]. Perfusion, 2021, 36(1): 63-69. [30] YANG Z, FAN X, CHENG W, et al. AIE nanoassemblies for
[8] CUKER A, CINES D B. How I treat heparin-induced thrombocytopenia[J]. discrimination of glycosaminoglycans and heparin quality control[J].
Blood, 2012, 119(10): 2209-2218. Analytical Chemistry, 2019, 91(15): 10295-10301.
[9] SUN X J, LIN L, LIU X Y, et al. Capillary electrophoresis-mass [31] LI Q Y, WU Y H, LU H, et al. Construction of supramolecular
spectrometry for the analysis of heparin oligosaccharides and low nanoassembly for responsive bacterial elimination and effective
molecular weight heparin[J]. Analytical Chemistry, 2016, 88(3): bacterial detection [J]. ACS Applied Materials & Interfaces, 2017,
1937-1943. 9(11): 10180-10189.
[10] LIAO H, LIU Y, CHEN M, et al. A colorimetric heparin assay based [32] CAO Y L, SHI S, WANG L L, et al. Ultrasensitive fluorescence
on the inhibition of the oxidase mimicking activity of cerium oxide detection of heparin based on quantum dots and a functional ruthenium
nanoparticles[J]. Mikrochim Acta, 2019, 186(5): 274-280. polypyridyl complex[J]. Biosensors and Bioelectronics, 2014, 55(12):
[11] TIAN L, ZHAO H S, ZHAO Z Z, et al. A facile voltammetric 174-179.
method for detection of heparin in plasma based on the [33] JIANG R, ZHAO S, CHEN L K, et al. Fluorescence detection of
polyethylenimine modified electrode[J]. Analytical Methods, 2019, protamine, heparin and heparinase Ⅱ based on a novel aie molecule
11(10): 1324-1330. with four carboxyl[J]. International Journal of Biological Macromolecules,
[12] YANG M D, CHEN J, ZHOU H P, et al. Polycation-induced 2020, 156(8): 1153-1159.
benzoperylene probe excimer formation and the ratiometric detection [34] LI S W, GAO M, WANG S X, et al. Light up detection of heparin
of heparin and heparinase[J]. Biosensors and Bioelectronics, 2016, based on aggregation-induced emission and synergistic counter ion
75(1): 404-410. displacement[J]. Chem Communs, 2017, 53(35): 4795-4798.
[13] QIAO Y D, YAO Z Y, GE W Q, et al. Rapid and visual detection of heparin [35] ZHANG Z P, LI S, HUANG P C, et al. Colorimetric and fluorometric
based on the disassembly of polyelectrolyte-induced pyrene excimers[J]. aggregation-based heparin assay by using gold nanoclusters and gold
Organic & Biomolecular Chemistry, 2017, 15(12): 2569-2574. nanoparticles[J]. Mikrochim Acta, 2019, 186(12): 790-798.
[14] BAYRAKTUTAN T, BAYRAKTUTAN O F. A novel turn on [36] PANG S, LIU S Y, SU X G. A fluorescence assay for the trace
fluorescence sensor for determination enoxaparin, a low molecular detection of protamine and heparin[J]. RSC Advances, 2014, 4(49):
weight heparin[J]. Journal of Fluorescence, 2020, 30(6): 1591-1599. 25857-25862.
[15] CAO Y L, SHI S, WANG L L, et al. Ultrasensitive fluorescence [37] LIU H L, SONG P S, WEI R R, et al. A facile, sensitive and selective
detection of heparin based on quantum dots and a functional fluorescent probe for heparin based on aggregation-induced
ruthenium polypyridyl complex[J]. Biosensors and Bioelectronics, emission[J]. Talanta, 2014, 118(15): 348-352.
2014, 55(5): 174-179. [38] GAO Y X, WEI K L, LI J Z, et al. A facile four-armed aie fluorescent
[16] LIU J H, LI Y, LIU L, et al. Current progress on antibiotic sensing sensor for heparin and protamine[J]. Sensors and Actuators B:
based on ratiometric fluorescent sensors[J]. Bulletin of Environmental Chemical, 2018, 277(20): 408-414.
Contamination and Toxicology, 2021, 107(2): 176-184. [39] WEI W, WANG H J, JIANG C Q. Spectrofluorimetric determination
[17] LUO J, XIE Z, LAM J W, et al. Aggregation-induced emission of of trace heparin using lomefloxacin-terbium probe[J]. Spectrochimica
1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications, Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 63(2):
2001, 18(8): 1740-1741. 241-246.