Page 131 - 《精细化工》2023年第1期
P. 131

第 1 期               王雨生,等:  银掺杂氮化碳负载 Pd 催化剂的制备及在甲酸脱氢中的应用                                 ·123·


                          –1
            使用下降了27 h ,在经过5次循环使用后Ag 3% C 3 N 4 -Pd                 catalyzed by palladium catalyst[D]. Jinan: Shandong University (山东
                                                                   大学), 2019.
                                        –1
            催化剂的 TOF 值仅下降了 72 h ,说明催化剂具有良                      [6]   DEMIRCI U B. Ammonia  borane,  a material  with exceptional
            好的循环稳定性。                                               properties for chemical hydrogen storage[J]. International Journal of
                                                                   Hydrogen Energy, 2017, 42(15): 9978-10013.
                                                               [7]  DONG Z (董重).  Preparation of supported palladium-cobalt-nickel
                     表 1   Pd 基催化剂的甲酸脱氢活性                          catalyst and its catalytic dehydrogenation of formic acid[D]. Hangzhou:
            Table 1    Dehydrogenation activity of formic acid by Pd-based   Zhejiang University (浙江大学), 2020.
                   catalysts                                   [8]   FELLAY C,  DYSON P J, LAURENZCY G. A viable hydrogen-
                                                                   storage system based on selective formic acid decomposition with a
                                              活化能/    参考
                催化剂        助剂    温度/K TOF/h                        ruthenium catalyst[J]. Angewandte Chemie International Edition,
                                           –1
                                              (kJ/mol)  文献
                                                                   2008, 47(21): 3966-3968.
             Ag 18Pd 82@ZIF-8 HCOONa   353  580   51.4   [18]  [9]   ENTHALER S, VON L J, SCHMIDT T. Carbon dioxide and formic
             Ag 9Pd 91-g-C 3N 4 HCOONa   323  480   29.5   [19]    acid-The couple for environmental-friendly hydrogen  storage[J].
             Pd 1Ag 6/N-rGO   —   298   171    25.8   [23]         Energy & Environmental Science, 2010, 3(9): 1207-1217.
                                                               [10]  ZHANG Z,  LUO  Y, LIU S,  et al. A  PdAg-CeO 2 nanocomposite
             Pd 1Au 1/30-LA   —   333   8355   38.9   [24]
                                                                   anchored  on mesoporous carbon:  A highly efficient catalyst for
                         HCOONa   323   683    45.7   [25]
             Ag 0.25Pd/WO 3                                        hydrogen production from formic  acid at room temperature[J].
             Ag 3%C 3N 4-Pd  HCOONa  323  991  31.7   本文           Journal of Materials Chemistry A, 2019, 7(37): 21438-21446.
                                                               [11]  TEDSREE K, LI  T, JONES S,  et al. Hydrogen production from
                 注:N-rGO 为氮改性还原石墨烯;LA 为 L-赖氨酸;“—”                  formic acid decomposition at room temperature using a Ag-Pd core-
            代表未加入。                                                 hell nanocatalyst[J]. Nature Nanotechnology, 2011, 6(5): 302-307.
                                                               [12]  ONISHI N, IGUCHI M, YANG X, et al. Development of effective
                                                                   catalysts for hydrogen storage technology using formic acid[J].
            3   结论                                                 Advanced Energy Materials, 2019, 9(23): 1801275.
                                                               [13]  ZHANG S, JIANG B, JIANG K, et al. Surfactant-free synthesis of
                 通过高温焙烧 AgNO 3 预修饰三聚氰胺制备了                          carbon-supported palladium nanoparticles and size-dependent hydrogen
                                                                   production from formic acid-formate solution[J].  ACS  Applied
            Ag x C 3 N 4 载体,Ag 物种被有效掺杂到氮化碳体相并                      Materials & Interfaces, 2017, 9(29): 24678-24687.
            具有良好的分散度,优化了氮化碳载体的晶相结构                             [14]  CHEN H, SHUANG H, LIN W, et al. Tuning interfacial electronic
                                                                   properties of palladium oxide on vacancy-abundant carbon nitride for
            和微观形貌,同时该 Ag x C 3 N 4 载体可以有效提高 Pd                     low-temperature dehydrogenation[J].  ACS Catalysis, 2021, 11(10):
            物种在其表面的分散度。通过探究不同 AgNO 3 添加                            6193-6199.
                                                               [15]  FU J, YU J, JIANG  C,  et al. g-C 3N 4-based heterostructured
            量对催化剂性能的影响发现,当 AgNO 3 质量为三聚                            photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503.
            氰胺质量的 3%时,Ag 3% C 3N 4 -Pd 催化效果较好,其甲               [16]  HU S, MA L,  YOU J,  et al. Enhanced visible light  photocatalytic
                                                                   performance of g-C 3N 4 photocatalysts co-doped with  iron and
            酸分解活化能为 31.7 kJ/mol,低于 C 3 N 4 -Pd-Ag 3% 的             phosphorus[J]. Applied Surface Science, 2014, 311(1): 164-171.
            甲酸制氢活化能(38.0 kJ/mol)。经过反应体系优化,                     [17]  ZHANG G, ZHANG M, YE X, et al. Iodine modified carbon nitride
                                                                   semiconductors as visible light photocatalysts for hydrogen evolution[J].
            在 323 K 时,基于该催化剂的甲酸分解 TOF 值可达                          Advanced Materials, 2014, 26(5): 805-809.
                  –1
            991 h ,且没有 CO 生成。在 5 次循环使用中该催                      [18]  DAI H, XIA B, WEN L, et al. Synergistic catalysis of AgPd@ ZIF-8
                                                                   on dehydrogenation of formic acid[J]. Applied Catalysis B:
            化剂催化活性也没有出现明显下降。因此,该催化                                 Environmental, 2015, 165(1): 57-62.
            剂展现了良好的催化活性、选择性和循环稳定性。                             [19]  YAO F, LI X, WAN C, et al. Highly efficient hydrogen release from
                                                                   formic acid using a graphitic carbon nitride-supported AgPd nanoparticle
            通过 AgNO 3 预修饰三聚氰胺,少量 Ag 加入即可显                          catalyst[J]. Applied Surface Science, 2017, 426: 605-611.
            著调变氮化碳载体的微观结构和后续催化活性,该                             [20]  TING S W, CHENG S, TSANG K Y, et al. Low activation energy
                                                                   dehydrogenation of aqueous formic acid on platinum-ruthenium-
            研究为甲酸分解用氮化碳载体的优化提供了一种新                                 bismuth oxide at near ambient temperature and pressure[J]. Chemical
            思路。                                                    Communications, 2009, 47: 7333-7335.
                                                               [21]  WU G, ZHANG Y, LIU J,  et al. Porous graphitic carbon nitride
                                                                   synthesized via direct polymerization of urea for efficient sunlight-
            参考文献:                                                  driven photocatalytic hydrogen production[J]. Nanoscale, 2012, 4(17):
            [1]   LIU Y X (刘迎新), ZHANG L (张粮), ZHANG K Y (张凯悦), et al.   5300-5303.
                 Reduction amination of levulinic acid and nitrile over Pd catalyst to   [22]  LIU J, LAN L, LI R, et al. Agglomerated Ag-Pd catalyst with
                 prepare pyrrolidone compounds[J]. Fine Chemicals (精细化工),   performance for hydrogen generation from formic  acid at room
                 2021, 38(12): 2531-2538.                          temperature[J]. International  Journal of Hydrogen Energy, 2016,
            [2]   FU R B (付融冰), ZHANG H M (张慧明). The current state of   41(2): 951-958.
                 China's energy[J]. Energy and Environment Protection (能源环境保  [23]  HUANG Y, XU J, MA X, et al. An effective low Pd-loading catalyst
                 护), 2005, 19(1): 8-12.                            for hydrogen generation from formic acid[J]. International Journal of
            [3]   STATHI P, SOLAKIDOU M,  LOULOUDI M,  et al. From   Hydrogen Energy, 2017, 42(29): 18375-18382.
                 homogeneous to heterogenized molecular catalysts for H 2 production   [24]  HONG W, KITTA M, TSUMORI N, et al. Immobilization of highly
                 by formic acid dehydrogenation: Mechanistic aspects, role of additives,   active bimetallic PdAu nanoparticles onto nanocarbons for
                 and co-catalysts[J]. Energies, 2020, 13(3): 733-736.   dehydrogenation of formic acid[J]. Journal of Materials Chemistry A,
            [4]   WANG C,  ASTRUC D. Recent developments of nanocatalyzed   2019, 7(32): 18835-18839.
                 liquid-phase hydrogen generation[J]. Chemical Society Reviews, 2021,   [25]  AKBAYRA S. Decomposition of formic acid using tungsten (Ⅵ)
                 50(5): 3437-3484.                                 oxide supported  AgPd nanoparticles[J]. Journal of Colloid and
            [5]   GUO X T (郭晓彤). Study on dehydrogenation of formic acid system   Interface Science, 2019, 538(1): 682-688.
   126   127   128   129   130   131   132   133   134   135   136