Page 131 - 《精细化工》2023年第1期
P. 131
第 1 期 王雨生,等: 银掺杂氮化碳负载 Pd 催化剂的制备及在甲酸脱氢中的应用 ·123·
–1
使用下降了27 h ,在经过5次循环使用后Ag 3% C 3 N 4 -Pd catalyzed by palladium catalyst[D]. Jinan: Shandong University (山东
大学), 2019.
–1
催化剂的 TOF 值仅下降了 72 h ,说明催化剂具有良 [6] DEMIRCI U B. Ammonia borane, a material with exceptional
好的循环稳定性。 properties for chemical hydrogen storage[J]. International Journal of
Hydrogen Energy, 2017, 42(15): 9978-10013.
[7] DONG Z (董重). Preparation of supported palladium-cobalt-nickel
表 1 Pd 基催化剂的甲酸脱氢活性 catalyst and its catalytic dehydrogenation of formic acid[D]. Hangzhou:
Table 1 Dehydrogenation activity of formic acid by Pd-based Zhejiang University (浙江大学), 2020.
catalysts [8] FELLAY C, DYSON P J, LAURENZCY G. A viable hydrogen-
storage system based on selective formic acid decomposition with a
活化能/ 参考
催化剂 助剂 温度/K TOF/h ruthenium catalyst[J]. Angewandte Chemie International Edition,
–1
(kJ/mol) 文献
2008, 47(21): 3966-3968.
Ag 18Pd 82@ZIF-8 HCOONa 353 580 51.4 [18] [9] ENTHALER S, VON L J, SCHMIDT T. Carbon dioxide and formic
Ag 9Pd 91-g-C 3N 4 HCOONa 323 480 29.5 [19] acid-The couple for environmental-friendly hydrogen storage[J].
Pd 1Ag 6/N-rGO — 298 171 25.8 [23] Energy & Environmental Science, 2010, 3(9): 1207-1217.
[10] ZHANG Z, LUO Y, LIU S, et al. A PdAg-CeO 2 nanocomposite
Pd 1Au 1/30-LA — 333 8355 38.9 [24]
anchored on mesoporous carbon: A highly efficient catalyst for
HCOONa 323 683 45.7 [25]
Ag 0.25Pd/WO 3 hydrogen production from formic acid at room temperature[J].
Ag 3%C 3N 4-Pd HCOONa 323 991 31.7 本文 Journal of Materials Chemistry A, 2019, 7(37): 21438-21446.
[11] TEDSREE K, LI T, JONES S, et al. Hydrogen production from
注:N-rGO 为氮改性还原石墨烯;LA 为 L-赖氨酸;“—” formic acid decomposition at room temperature using a Ag-Pd core-
代表未加入。 hell nanocatalyst[J]. Nature Nanotechnology, 2011, 6(5): 302-307.
[12] ONISHI N, IGUCHI M, YANG X, et al. Development of effective
catalysts for hydrogen storage technology using formic acid[J].
3 结论 Advanced Energy Materials, 2019, 9(23): 1801275.
[13] ZHANG S, JIANG B, JIANG K, et al. Surfactant-free synthesis of
通过高温焙烧 AgNO 3 预修饰三聚氰胺制备了 carbon-supported palladium nanoparticles and size-dependent hydrogen
production from formic acid-formate solution[J]. ACS Applied
Ag x C 3 N 4 载体,Ag 物种被有效掺杂到氮化碳体相并 Materials & Interfaces, 2017, 9(29): 24678-24687.
具有良好的分散度,优化了氮化碳载体的晶相结构 [14] CHEN H, SHUANG H, LIN W, et al. Tuning interfacial electronic
properties of palladium oxide on vacancy-abundant carbon nitride for
和微观形貌,同时该 Ag x C 3 N 4 载体可以有效提高 Pd low-temperature dehydrogenation[J]. ACS Catalysis, 2021, 11(10):
物种在其表面的分散度。通过探究不同 AgNO 3 添加 6193-6199.
[15] FU J, YU J, JIANG C, et al. g-C 3N 4-based heterostructured
量对催化剂性能的影响发现,当 AgNO 3 质量为三聚 photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503.
氰胺质量的 3%时,Ag 3% C 3N 4 -Pd 催化效果较好,其甲 [16] HU S, MA L, YOU J, et al. Enhanced visible light photocatalytic
performance of g-C 3N 4 photocatalysts co-doped with iron and
酸分解活化能为 31.7 kJ/mol,低于 C 3 N 4 -Pd-Ag 3% 的 phosphorus[J]. Applied Surface Science, 2014, 311(1): 164-171.
甲酸制氢活化能(38.0 kJ/mol)。经过反应体系优化, [17] ZHANG G, ZHANG M, YE X, et al. Iodine modified carbon nitride
semiconductors as visible light photocatalysts for hydrogen evolution[J].
在 323 K 时,基于该催化剂的甲酸分解 TOF 值可达 Advanced Materials, 2014, 26(5): 805-809.
–1
991 h ,且没有 CO 生成。在 5 次循环使用中该催 [18] DAI H, XIA B, WEN L, et al. Synergistic catalysis of AgPd@ ZIF-8
on dehydrogenation of formic acid[J]. Applied Catalysis B:
化剂催化活性也没有出现明显下降。因此,该催化 Environmental, 2015, 165(1): 57-62.
剂展现了良好的催化活性、选择性和循环稳定性。 [19] YAO F, LI X, WAN C, et al. Highly efficient hydrogen release from
formic acid using a graphitic carbon nitride-supported AgPd nanoparticle
通过 AgNO 3 预修饰三聚氰胺,少量 Ag 加入即可显 catalyst[J]. Applied Surface Science, 2017, 426: 605-611.
著调变氮化碳载体的微观结构和后续催化活性,该 [20] TING S W, CHENG S, TSANG K Y, et al. Low activation energy
dehydrogenation of aqueous formic acid on platinum-ruthenium-
研究为甲酸分解用氮化碳载体的优化提供了一种新 bismuth oxide at near ambient temperature and pressure[J]. Chemical
思路。 Communications, 2009, 47: 7333-7335.
[21] WU G, ZHANG Y, LIU J, et al. Porous graphitic carbon nitride
synthesized via direct polymerization of urea for efficient sunlight-
参考文献: driven photocatalytic hydrogen production[J]. Nanoscale, 2012, 4(17):
[1] LIU Y X (刘迎新), ZHANG L (张粮), ZHANG K Y (张凯悦), et al. 5300-5303.
Reduction amination of levulinic acid and nitrile over Pd catalyst to [22] LIU J, LAN L, LI R, et al. Agglomerated Ag-Pd catalyst with
prepare pyrrolidone compounds[J]. Fine Chemicals (精细化工), performance for hydrogen generation from formic acid at room
2021, 38(12): 2531-2538. temperature[J]. International Journal of Hydrogen Energy, 2016,
[2] FU R B (付融冰), ZHANG H M (张慧明). The current state of 41(2): 951-958.
China's energy[J]. Energy and Environment Protection (能源环境保 [23] HUANG Y, XU J, MA X, et al. An effective low Pd-loading catalyst
护), 2005, 19(1): 8-12. for hydrogen generation from formic acid[J]. International Journal of
[3] STATHI P, SOLAKIDOU M, LOULOUDI M, et al. From Hydrogen Energy, 2017, 42(29): 18375-18382.
homogeneous to heterogenized molecular catalysts for H 2 production [24] HONG W, KITTA M, TSUMORI N, et al. Immobilization of highly
by formic acid dehydrogenation: Mechanistic aspects, role of additives, active bimetallic PdAu nanoparticles onto nanocarbons for
and co-catalysts[J]. Energies, 2020, 13(3): 733-736. dehydrogenation of formic acid[J]. Journal of Materials Chemistry A,
[4] WANG C, ASTRUC D. Recent developments of nanocatalyzed 2019, 7(32): 18835-18839.
liquid-phase hydrogen generation[J]. Chemical Society Reviews, 2021, [25] AKBAYRA S. Decomposition of formic acid using tungsten (Ⅵ)
50(5): 3437-3484. oxide supported AgPd nanoparticles[J]. Journal of Colloid and
[5] GUO X T (郭晓彤). Study on dehydrogenation of formic acid system Interface Science, 2019, 538(1): 682-688.