Page 110 - 《精细化工)》2023年第10期
P. 110
·2188· 精细化工 FINE CHEMICALS 第 40 卷
metal-organic frameworks, and inorganic-organic hybrids[J]. Technology, 2017, 7(7): 1478-1487.
Accounts of Chemical Research, 2007, 40(10): 1005-1013. [50] HWANG Y K, HONG D Y, CHANG J S, et al. Amine grafting on
[40] WU J, GAO Y, ZHANG W, et al. Deep desulfurization by oxidation coordinatively unsaturated metal centers of MOFs: Consequences for
using an active ionic liquid-supported Zr metal-organic framework as catalysis and metal encapsulation[J]. Angewandte Chemie, 2008,
catalyst[J]. Applied Organometallic Chemistry, 2015, 29(2): 96-100. 120(22): 4212-4216.
[41] HASSAN H M A, BETIHA M A, MOHAMED S K, et al. Stable and [51] HONG D Y, HWANG Y K, SERRE C, et al. Porous chromium
recyclable MIL-101 (Cr)-ionic liquid based hybrid nanomaterials as terephthalate MIL-101 with coordinatively unsaturated sites: Surface
heterogeneous catalyst[J]. Journal of Molecular Liquids, 2017, 236: functionalization, encapsulation, sorption and catalysis[J]. Advanced
385-394. Functional Materials, 2009, 19(10): 1537-1552.
[42] LUO Q, JI M, LU M, et al. Organic electron-rich N-heterocyclic [52] CHONG S Y, WANG T T, CHENG L C, et al. Metal-organic
compound as a chemical bridge: Building a Brönsted acidic ionic framework MIL-101-NH 2-Supported acetate-based butylimidazolium
liquid confined in MIL-101 nanocages[J]. Journal of Materials ionic liquid as a highly efficient heterogeneous catalyst for the
Chemistry A, 2013, 1(22): 6530-6534. synthesis of 3-aryl-2-oxazolidinones[J]. Langmuir, 2018, 35(2):
[43] WANG T T, SONG X, LUO Q, et al. Acid-base bifunctional catalyst: 495-503.
Carboxyl ionic liquid immobilized on MIL-101-NH 2 for rapid [53] CHONG S Y, WANG T, ZHONG H, et al. A bifunctional and
synthesis of propylene carbonate from CO 2 and propylene oxide recyclable catalyst: Amine and ionic liquid grafting on MOFs for the
under facile solvent-free conditions[J]. Microporous and Mesoporous one-pot synthesis of N-aryl oxazolidin-2-ones[J]. Green Energy &
Materials, 2018, 267: 84-92. Environment, 2020, 5(2): 154-165.
[44] WANG T T, SONG X, XU H, et al. Recyclable and magnetically [54] DING L G, YAO B J, JIANG W L, et al. Bifunctional
functionalized metal-organic framework catalyst: IL/Fe 3O 4@ HKUST-1 imidazolium-based ionic liquid decorated UiO-67 type MOF for
for the cycloaddition reaction of CO 2 with epoxides[J]. ACS Applied selective CO 2 adsorption and catalytic property for CO 2
Materials & Interfaces, 2021, 13(19): 22836-22844. cycloaddition with epoxides[J]. Inorganic Chemistry, 2017, 56(4):
[45] LUO Q X, SONG X, JI M, et al. Molecular size-and shape-selective 2337-2344.
Knoevenagel condensation over microporous Cu 3(BTC) 2 immobilized [55] LIU J, GOETJEN T A, WANG Q, et al. MOF-enabled confinement
amino-functionalized basic ionic liquid catalyst[J]. Applied Catalysis and related effects for chemical catalyst presentation and
A: General, 2014, 478: 81-90. utilization[J]. Chemical Society Reviews, 2022, 51(3): 1045-1097.
[46] LUO Q X, AN B, JI M, et al. Metal-organic frameworks HKUST-1 [56] KHAN N A, HASAN Z, JHUNG S H. Ionic liquid@ MIL-101
as porous matrix for encapsulation of basic ionic liquid catalyst: prepared via the ship-in-bottle technique: Remarkable adsorbents for
Effect of chemical behaviour of ionic liquid in solvent[J]. Journal of the removal of benzothiophene from liquid fuel[J]. Chemical
Porous Materials, 2015, 22: 247-259. Communications, 2016, 52(12): 2561-2564.
[47] LUO Q X, JI M, PARK S E, et al. PdCl 2 immobilized on [57] DING M, JIANG H L. Incorporation of imidazolium-based poly
metal-organic framework CuBTC with the aid of ionic liquids: (ionic liquid)s into a metal-organic framework for CO 2 capture and
Enhanced catalytic performance in selective oxidation of conversion[J]. ACS Catalysis, 2018, 8(4): 3194-3201.
cyclohexene[J]. RSC Advances, 2016, 6(39): 33048-33054. [58] LI Z, WANG W, CHEN Y, et al. Constructing efficient ion
[48] CHEN C, WU Z, QUE Y, et al. Immobilization of a nanochannels in alkaline anion exchange membranes by the in-situ
thiol-functionalized ionic liquid onto HKUST-1 through thiol assembly of a poly(ionic liquid) in metal-organic frameworks[J].
compounds as the chemical bridge[J]. RSC Advances, 2016, 6(59): Journal of Materials Chemistry A, 2016, 4(6): 2340-2348.
54119-54128. [59] PEI Y, ZHANG Y, MA J, et al. Carboxyl functional poly(ionic
[49] ABEDNATANZI S, LEUS K, DERAKHSHANDEH P G, et al. liquid)s confined in metal-organic frameworks with enhanced
POM@ IL-MOFs-inclusion of POMs in ionic liquid modified MOFs adsorption of metal ions from water[J]. Separation and Purification
to produce recyclable oxidation catalysts[J]. Catalysis Science & Technology, 2022, 299: 121790.
(上接第 2179 页) via isotopic labeling and methanol sorption studies[J]. Journal of
[63] YAO R, HERRERA J E, CHEN L H, et al. Generalized mechanistic Catalysis, 2015, 322: 118-129.
framework for ethane dehydrogenation and oxidative dehydrogenation [69] HERACLEOUS E, LEMONIDOU A. Ni-Me-O mixed metal oxides
on molybdenum oxide catalysts[J]. ACS Catalysis, 2020, 10(12): for the effective oxidative dehydrogenation of ethane to ethylene-
6952-6968. Effect of promoting metal Me[J]. Journal of Catalysis, 2010, 270(1):
[64] XU L Y, LIU J X, YANG H, et al. Regeneration behaviors of Fe/Si-2 67-75.
and Fe-Mn/Si-2 catalysts for C 2H 6 dehydrogenation with CO 2 to [70] LI Y C, LI L Y, LUO S Z, et al. The role of K in tuning oxidative
C 2H 4[J]. Catalysis Letters, 1999, 62: 185-189. dehydrogenation of ethane with CO 2 to be selective toward
[65] SONG G Z (宋庚哲). Selective oxidative dehydrogenation of ethane ethylene[J]. Advanced Composites and Hybrid Materials, 2021, 4(3):
over transition metal oxide catalysts (Mo, Zn) in CO 2 atmosphere[D]. 793-805.
Xi'an: Northwest University (西北大学), 2022. [71] MARQUART W, RASEALE S, CLAEYS M, et al. Promoted
[66] NAJARI S, SAEIDI S, CONCEPCION P, et al. Oxidative Mo xC y-based catalysts for the CO 2 oxidative dehydrogenation of
dehydrogenation of ethane: Catalytic and mechanistic aspects and ethane[J]. ChemCatChem, 2022, 14(13): e202200267.
future trends[J]. Chemical Society Reviews, 2021, 50(7): 4564-4605. [72] DAI Y H, GAO X, WANG Q J, et al. Recent progress in heterogeneous
[67] BUGROVA T A, DUTOV V V, SVETLICHNYI V A, et al. Oxidative metal and metal oxide catalysts for direct dehydrogenation of ethane
dehydrogenation of ethane with CO 2 over CrO x catalysts supported and propane[J]. Chemical Society Reviews, 2021, 50(9): 5590-5630.
on Al 2O 3, ZrO 2, CeO 2 and Ce xZr 1–xO 2[J]. Catalysis Today, 2019, 333: [73] DENG Z B, GE X, ZHANG W T, et al. Oxidative dehydrogenation
71-80. of ethane with carbon dioxide over silica molecular sieves supported
[68] SKOUFA Z, HERACLEOUS E, LEMONIDOU A A. On ethane chromium oxides: Pore size effect[J]. Chinese Journal of Chemical
ODH mechanism and nature of active sites over NiO-based catalysts Engineering, 2021, 34: 77-86.