Page 143 - 《精细化工)》2023年第10期
P. 143
第 10 期 张群利,等: 聚乙烯醇/淀粉/凤仙透骨草提取物复合膜的制备及性能 ·2221·
参考文献: [13] WU J G, WANG P J, CHEN S C. Antioxidant and antimicrobial
effectiveness of catechin-impregnated PVA-starch film on red meat
[1] ZHANG Q L (张群利), CUI L L (崔琳琳), GAO X (高雪). [J]. Journal of Food Quality, 2010, 33(6): 780-801.
Preparation and properties of regenerated cellulose/chitosan/silver [14] HE B B (何宾宾), YU H R (余惠容), ZHANG L (张利), et al.
nanowire antibacterial composite film[J]. Fine Chemicals (精细化 Preparation of potato starch/PVA composite film and its application in
工), 2022, 39(5): 892-897. pork preservation[J]. China Plastics Industry (塑料工业), 2022,
[2] CUI C L, JI N, WANG Y F, et al. Bioactive and intelligent starch- 50(6): 118-124.
based films: A review[J]. Trends in Food Science & Technology, [15] CANO A, CHAFER M, CHIRALT A, et al. Physical and antimicrobial
2021, 116: 854-869. properties of starch-PVA blend films as affected by the incorporation
[3] SOUZA A G, FERREIRA R R, PAULA L C, et al. Starch-based films of natural antimicrobial agents[J]. Foods, 2016, 5(3): 1-17.
enriched with nanocellulose-stabilized Pickering emulsions [16] WANG M R (王梦如), QIAO H Y (乔海颜), KE M Y (柯梦雨), et al.
containing different essential oils for possible applications in food The antibacterial effect of plant-originated essential oils on food
packaging[J]. Food Packaging and Shelf Life, 2021, 27: 100615. preservation and its application on packaging[J]. Science and Technology
[4] GU Y Z (顾云智), HUANG Z Z (黄振祝), LIN S D (林树东), et al. of Food Industry (食品工业科技), 2022, 43(7): 439-444.
Preparation and performance research of aramid nanofibers [17] LAO Y (老莹), HU W Z (胡文忠), FENG K (冯可), et al. Application
reinforced polyvinyl alcohol composite films[J]. Fine Chemicals (精 of natural antimicrobial agents on fruits and vegetables preservation
细化工), 2018, 35(8): 1288-1293. and its mechanism[J]. Food and Fermentation Industries (食品与发
[5] CHANG X Y (常馨月), WU T Y (吴天宇), LIU W H (刘文华), et al. 酵工业), 2018, 44(9): 288-293.
Effect of plant aspen flower extract on the properties of CG/CMS [18] WANG Q T (王倩婷), ZHONG X Y (钟昔阳), MA R Y (马汝悦),
composite film[J]. Forest Engineering (森林工程), 2021, 37(5): et al. Effects of tea polyphenols on physicochemical, antioxidant and
37-42. antibacterial properties of pullulan-gelatin films[J]. Journal of Food
[6] ZHOU X M, CHENG R, WANG B, et al. Biodegradable sandwich- Science and Technology (食品科学技术学报), 2022, 40(6): 93-102.
architectured films derived from pea starch and polylactic acid with [19] ZHANG Q L (张群利), LUO H (罗灏), CUI L L (崔琳琳), et al.
enhanced shelf-life for fruit preservation[J]. Carbohydrate Polymers, Preparation and performance of fish scale gelatin/chitosan/lavender
2021, 251: 117117. essential oil antibacterial composite film[J]. Fine Chemicals (精细化
[7] ZONG L (宗琳), CHEN C W (陈晨伟), CHEN Z J (陈智杰), et al. 工), 2022, 39(11): 2259-2267.
Research progress in starch/pol(vinyl alcohol) active packaging film [20] GU Y Y (顾媛媛), CHEN M (陈媚), WANG L Z (王连芝), et al.
and its application in food packaging[J]. China Plastics (中国塑料), Chemical constituents of active antifungal parts of Impatiens
2020, 34(8): 101-112. balsamina[J]. Chinese Traditional Patent Medicine (中成药), 2022,
[8] TIAN H F, YAN J, RAJULU A V, et al. Fabrication and properties of 44(3): 825-829.
polyvinyl alcohol/starch blend films: Effect of composition and [21] ZENG R (曾荣), SU B L (苏卜利), CHEN J Y (陈金印), et al. Studies
humidity[J]. International Journal of Biological Macromolecules, on the antimicrobial characteristics of extracts from impatiens
2017, 96: 518-523. balsamina L.[J]. Acta Agriculturae Universitatis Jiangxiensis (江西
[9] JUNLAPONG K, BOONSUK P, CHAIBUNDIT C, et al. Highly 农业大学学报), 2012, 34(2): 358-362, 381.
water resistant cassava starch/poly(vinyl alcohol) films[J]. International [22] CHEN C Y (陈楚英), CHEN Y H (陈玉环), PENG X (彭旋), et al.
Journal of Biological Macromolecules, 2019, 137: 521-527. Effect of Impatiens balsamina L. extracts on postharvest physiological
[10] TIAN H F, WANG K, LIU D, et al. Enhanced mechanical and relative enzymes of xinyu tangerine fruits[J]. Journal of Chinese
thermal properties of poly(vinyl alcohol)/corn starch blends by Institute of Food Science and Technology (中国食品学报), 2017,
nanoclay intercalation[J]. International Journal of Biological 17(6): 138-144.
Macromolecules, 2017, 101: 314-320. [23] YANG P P (杨萍萍), GUO S Q (郭思琪), HOU W F (侯温甫), et al.
[11] AYDIN A A, ILBERG V. Effect of different polyol-based plasticizers Antibacterial of ε-poly-L-lysine/polyvinyl alcohol composite film
on thermal properties of polyvinyl alcohol: Starch blends[J]. and its preservation effect on fresh duck meat[J]. Modern Food
Carbohydrate Polymers, 2016, 136: 441-448. Science and Technology (现代食品科技), 2020, 36(3): 113-119, 98.
[12] MUSTAFA P, NIAZI M B K, JAHAN Z, et al. PVA/starch/ [24] SHI J W (石建伟), SUN B H (孙百会), LI C W (李春伟). Study on
propolis/anthocyanins rosemary extract composite films as active and structure and properties of citric acid modified polyvinyl alcohol
intelligent food packaging materials[J]. Journal of Food Safety, 2019, starch composite film[J]. Packaging and Food Machinery (包装与食
40(1): 1-11. 品机械), 2021, 39(1): 18-24.
(上接第 2160 页) heterostructure nanofibers fabricated by electrospinning for excellent
photocatalytic hydrogen evolution without co-catalyst[J]. Chinese
[108] ZHANG Q S, XIAO Y, LI Y M, et al. NiS-decorated ZnO/ZnS Journal of Catalysis, 2020, 41: 1421-1429.
nanorod heterostructures for enhanced photocatalytic hydrogen [112] DONG Z F, WU Y, THIRUGNANAM N, et al. Double Z-scheme
production: Insight into the role of NiS[J]. Solar RRL, 2020, 4(4): ZnO/ZnS/g-C 3N 4 ternary structure for efficient photocatalytic H 2
1900568. production[J]. Applied Surface Science, 2018, 430: 293-300.
[109] ANJUM M, OVES M, KUMAR R, et al. Fabrication of ZnO-ZnS@ [113] DE-MORAES N P, MARINS L G P, YAMANAKA M Y D, et al.
polyaniline nanohybrid for enhanced photocatalytic degradation of Efficient photodegradation of 4-chlorophenol under solar radiation
2-chlorophenol and microbial contaminants in wastewater[J]. using a new ZnO/ZnS/carbon xerogel composite as a photocatalyst[J].
International Biodeterioration & Biodegradation, 2017, 119: 66-77. Journal of Photochemistry & Photobiology, A: Chemistry, 2021, 418:
[110] HUANG H B, YU K, WANG J T, et al. Controlled growth of 113377.
ZnS/ZnO heterojunctions on porous biomass carbons via one-step [114] HONG E, CHOI T, KIM J H. Application of content optimized
carbothermal reduction enables visible-light-driven photocatalytic H 2 ZnS-ZnO-CuS-CdS heterostructured photocatalyst for solar water
production[J]. Inorganic Chemistry Frontiers, 2019, 6(8): 2035-2042. splitting and organic dye decomposition[J]. Korean Journal of
[111] SUN D K, SHI J W, MA D D, et al. CdS/ZnS/ZnO ternary Chemical Engineering, 2015, 32(3): 424-428.