Page 58 - 《精细化工)》2023年第10期
P. 58

·2136·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 deionization and supercapacitors[J]. Materials Chemistry  Frontiers,   [43]  LIU Y, FU Y W,  LIU L,  et al. Low-cost  carbothermal reduction
                 2021, 5(8): 3480-3488.                            preparation of monodisperse Fe 3O 4/C core-shell nanosheets for
            [25]  LU J, JIAO  X, JIAO X L,  et al. Solvothermal synthesis and   improved microwave absorption[J].  ACS Applied Materials &
                 characterization of Fe 3O 4 and  γ-Fe 2O 3 nanoplates[J]. Journal of   Interfaces, 2018, 10(19): 16511-16520.
                 Physical Chemistry C, 2009, 113(10): 4012-4017.   [44]  DENG M, WU X D, ZHU A M, et al. Well-dispersed TiO 2 nanoparticles
            [26]  ZHAO  Z W,  LIU  J, CUI F Y,  et al.  One pot synthesis  of tunable   anchored on Fe 3O 4 magnetic nanosheets for efficient arsenic removal
                 Fe 3O 4-MnO 2 core-shell nanoplates and their applications for water   [J]. Journal of Environmental Management, 2019, 237: 63-74.
                 purification[J]. Journal of Materials Chemistry, 2012, 22(18): 9052-   [45]  ELAKKIYA R,  MATHANKUMAR S, MADURAIVEERAN G.
                 9057.                                             Design of transition metal oxides nanosheets for  the direct
            [27]  ZOU G F, XIONG K, JIANG C L, et al. Magnetic Fe 3O 4 nanodisc   electrocatalytic oxidation of glucose[J]. Materials Chemistry and
                 synthesis on a large scale  via  a surfactant-assisted process[J].   Physics, 2021, 269: 124770.
                 Nanotechnology, 2005, 16(9): 1584-1588.       [46]  CHENG J P, MA R, SHI D,  et al. Rapid growth of  magnetite
            [28]  ZHUANG L, ZHANG W, ZHAO Y X,  et al. Preparation and   nanoplates by  ultrasonic irradiation at low temperature[J]. Ultrasonics
                 characterization of Fe 3O 4 particles with novel nanosheets morphology and   Sonochemistry, 2010, 18(5): 1038-1042.
                 magnetochromatic property by a  modified solvothermal method[J].   [47]  CHENG J P, MA R, CHEN X,  et al. Effect of ferric ions on the
                 Scientific Reports, 2015, 5: 9320.                morphology and size of magnetite nanocrystals  synthesized by
            [29]  GUO C, WANG  L L, ZHU Y C,  et al. Fe 3O 4  nanoflakes in an   ultrasonic irradiation[J].  Crystal Research &  Technology, 2011,
                 N-doped carbon matrix as high-performance anodes for lithium ion   46(7): 723-730.
                 batteries[J]. Nanoscale, 2015, 7(22): 10123-10129.   [48]  ZHOU H F, YI R, LI J H, et al. Microwave-assisted synthesis and
            [30]  LIU Y, PAN F S, WANG M D,  et al. Vertically oriented Fe 3O 4   characterization of hexagonal Fe 3O 4 nanoplates[J]. Solid  State
                 nanoflakes within  hybrid membranes for efficient water/ethanol   Sciences, 2010, 12(1): 99-104.
                 separation[J]. Journal of Membrane Science, 2021, 620: 118916.   [49]  ZHANG F F, YANG Z H, YIN T H, et al. Simple and facile synthesis
            [31]  ZHU J, NAN Z D. Zn-doped Fe 3O 4 nanosheet formation induced by   of magnetic nanosheets by improved precipitation method[J]. Journal
                 EDA with high magnetization and an investigation of the formation   of Alloys and Compounds, 2022, 922: 166305.
                 mechanism[J]. Journal of Physical Chemistry C, 2017, 121(17):   [50]  ŠUTKA A, LAGZDINA S, JUHNEVICA I,  et al. Precipitation
                 9612-9620.                                        synthesis of magnetite Fe 3O 4 nanoflakes[J]. Ceramics International,
            [32]  LIU X D, DUAN X C, QIN Q, et al. Ionic liquid-assisted solvothermal   2014, 40(7): 11437-11440.
                 synthesis of oriented self-assembled Fe 3O 4 nanoparticles into   [51]  HOINKIS N, LUTZ H, LU  H,  et al.  Assembly of iron  oxide
                 monodisperse nanoflakes[J]. Crystengcomm, 2013,  15(17):  3284-   nanosheets at the air-water interface by leucine-histidine peptides[J].
                 3287.                                             RSC Advances, 2021, 11(45): 27965-27968.
            [33]  LIU X G, OR S  W, LEUNG C M,  et al. Microwave complex   [52]  YIN C J, GONG C H, CHU J W, et al. Ultrabroadband photodetectors
                 permeability of Fe 3O 4 nanoflake composites with and without   up to 10.6 μm based on 2D Fe 3O 4 nanosheets[J]. Advanced Materials,
                 magnetic field-induced rotational orientation[J]. Journal  of Applied   2020, 32(25): 202237.
                 Physics, 2013, 113(17): 173117.               [53]  HUANG S, ZHANG J W, YANG L, et al. Inward lithium-ion breathing
            [34]  KAMEI Y, WAKAYAMA K, MAKINOSE Y, et al. Syntheses of iron   of hollow carbon spheres-encapsulated Fe 3O 4@C nanodisc with
                 oxide nanoplates by hydrothermal treatment of iron-oleate precursor   superior  lithium ion storage performance[J]. Journal of  Alloys and
                 and their magnetization reversal[J]. Materials Science and Engineering B,   Compounds, 2019, 800: 16-22.
                 2017, 223: 70-75.                             [54]  SUN D H, SUN  D X, HAO Y. Controlled synthesis  of Fe 3O 4
            [35]  CHEN L  Q,  ZHOU Q,  XIONG Q F,  et al. Shape-evolution and   nanosheets via P123 micelle template[J]. Materials Science Forum,
                 growth mechanism of Fe 3O 4 polyhedrons[J]. Advances in Materials   2010, 663/664/665: 1125-1128.
                 Science & Engineering, 2015, 2015: 1-7.       [55]  WANG  X  Y, LIAO  Y L, ZHANG H  W,  et al. Low temperature-
            [36]  LI W J, YAO X Z, GUO Z, et al. Fe 3O 4 with novel nanoplate-stacked   derived  3D hexagonal crystalline Fe 3O 4 nanoplates for water
                 structure: Surfactant-free hydrothermal synthesis and application in   purification[J]. ACS Applied Materials & Interfaces, 2018, 10(4):
                 detection of heavy metal ions[J]. Journal of Electroanalytical Chemistry,   3644-3651.
                 2015, 749: 75-82.                             [56]  HU D W, WANG Y M. Preparation of hexagonal Fe 3O 4 nanometer
            [37]  WAN Y H, SHI X Q, XIA H, et al. Synthesis and characterization of   particles via weakly magnetic field assisted oxidation co-precipitation[J].
                 carbon-coated Fe 3O 4 nanoflakes as anode material for lithiumion   Advanced Materials Research, 2012, 418/419/420: 286-292.
                 batteries[J]. Materials Research Bulletin, 2013, 48(11): 4791-4796.   [57]  WANG W X, LIU Y, YUE Y F. The confined interlayer growth of
            [38]  YANG Y, LIU X L, LV Y B, et al. Orientation mediated enhancement   ultrathin two-dimensional Fe 3O 4 nanosheets with enriched oxygen
                 on magnetic hyperthermia of Fe 3O 4 nanodisc[J]. Advanced Functional   vacancies for peroxymonosulfate activation[J]. ACS Catalysis, 2021,
                 Materials, 2014, 25(5): 812-820.                  11(17): 11256-11265.
            [39]  YANG Y,  YANG  Y, XIAO W,  et al. Shape-dependent microwave   [58]  YING H, CHEN T T, ZHANG C Y,  et al. Regeneration of porous
                 permeability of Fe 3O 4 nanoparticles: A combined experimental and   Fe 3O 4 nanosheets from deep eutectic  solvent for high-performance
                 theoretical study[J]. Nanotechnology, 2015, 26(26): 265704.   electrocatalytic  nitrogen reduction[J]. Journal  of Colloid and  Interface
            [40]  YANG Y, LI M, WU Y P, et al. Size-dependent microwave absorption   Science, 2021, 602: 64-72.
                 properties of Fe 3O 4 nanodiscs[J].  RSC Advances, 2016, 6(30):   [59]  MA M, ZHANG  Y, GUO  Z,  et al. Facile synthesis of ultrathin
                 25444- 25448.                                     magnetic iron oxide nanoplates by Schikorr reaction[J]. Nanoscale
            [41]  YANG Y, LI M, WU Y P, et al. Nanoscaled self-alignment of Fe 3O 4   Research Letters, 2013, 8: 1-7.
                 nanodiscs in  ultrathin  rGO films with engineered conductivity for   [60]  LAMER V K, DINEGAR  R H.  Nucleation rate and the kinetic of
                 electromagnetic interference shielding[J]. Nanoscale, 2016, 8(35):   particle growth[J]. Journal of the American Chemical Society, 1950,
                 15989-15998.                                      72: 4847-4854.
            [42]  GAO G X, LU S Y, DONG B T, et al. One-pot synthesis of carbon   [61]  REISS H. The growth of uniform colloidal dispersions[J]. Journal of
                 coated Fe 3O 4 nanosheets with superior lithium storage capability[J].   Chemical Physics, 1951, 19(4): 482-487.
                 Journal of Materials Chemistry A, 2015, 3(8): 4716-4721.   [62]  MURRAY C  B,  NORRIS D J, BAWENDI M G. Synthesis and
   53   54   55   56   57   58   59   60   61   62   63