Page 58 - 《精细化工)》2023年第10期
P. 58
·2136· 精细化工 FINE CHEMICALS 第 40 卷
deionization and supercapacitors[J]. Materials Chemistry Frontiers, [43] LIU Y, FU Y W, LIU L, et al. Low-cost carbothermal reduction
2021, 5(8): 3480-3488. preparation of monodisperse Fe 3O 4/C core-shell nanosheets for
[25] LU J, JIAO X, JIAO X L, et al. Solvothermal synthesis and improved microwave absorption[J]. ACS Applied Materials &
characterization of Fe 3O 4 and γ-Fe 2O 3 nanoplates[J]. Journal of Interfaces, 2018, 10(19): 16511-16520.
Physical Chemistry C, 2009, 113(10): 4012-4017. [44] DENG M, WU X D, ZHU A M, et al. Well-dispersed TiO 2 nanoparticles
[26] ZHAO Z W, LIU J, CUI F Y, et al. One pot synthesis of tunable anchored on Fe 3O 4 magnetic nanosheets for efficient arsenic removal
Fe 3O 4-MnO 2 core-shell nanoplates and their applications for water [J]. Journal of Environmental Management, 2019, 237: 63-74.
purification[J]. Journal of Materials Chemistry, 2012, 22(18): 9052- [45] ELAKKIYA R, MATHANKUMAR S, MADURAIVEERAN G.
9057. Design of transition metal oxides nanosheets for the direct
[27] ZOU G F, XIONG K, JIANG C L, et al. Magnetic Fe 3O 4 nanodisc electrocatalytic oxidation of glucose[J]. Materials Chemistry and
synthesis on a large scale via a surfactant-assisted process[J]. Physics, 2021, 269: 124770.
Nanotechnology, 2005, 16(9): 1584-1588. [46] CHENG J P, MA R, SHI D, et al. Rapid growth of magnetite
[28] ZHUANG L, ZHANG W, ZHAO Y X, et al. Preparation and nanoplates by ultrasonic irradiation at low temperature[J]. Ultrasonics
characterization of Fe 3O 4 particles with novel nanosheets morphology and Sonochemistry, 2010, 18(5): 1038-1042.
magnetochromatic property by a modified solvothermal method[J]. [47] CHENG J P, MA R, CHEN X, et al. Effect of ferric ions on the
Scientific Reports, 2015, 5: 9320. morphology and size of magnetite nanocrystals synthesized by
[29] GUO C, WANG L L, ZHU Y C, et al. Fe 3O 4 nanoflakes in an ultrasonic irradiation[J]. Crystal Research & Technology, 2011,
N-doped carbon matrix as high-performance anodes for lithium ion 46(7): 723-730.
batteries[J]. Nanoscale, 2015, 7(22): 10123-10129. [48] ZHOU H F, YI R, LI J H, et al. Microwave-assisted synthesis and
[30] LIU Y, PAN F S, WANG M D, et al. Vertically oriented Fe 3O 4 characterization of hexagonal Fe 3O 4 nanoplates[J]. Solid State
nanoflakes within hybrid membranes for efficient water/ethanol Sciences, 2010, 12(1): 99-104.
separation[J]. Journal of Membrane Science, 2021, 620: 118916. [49] ZHANG F F, YANG Z H, YIN T H, et al. Simple and facile synthesis
[31] ZHU J, NAN Z D. Zn-doped Fe 3O 4 nanosheet formation induced by of magnetic nanosheets by improved precipitation method[J]. Journal
EDA with high magnetization and an investigation of the formation of Alloys and Compounds, 2022, 922: 166305.
mechanism[J]. Journal of Physical Chemistry C, 2017, 121(17): [50] ŠUTKA A, LAGZDINA S, JUHNEVICA I, et al. Precipitation
9612-9620. synthesis of magnetite Fe 3O 4 nanoflakes[J]. Ceramics International,
[32] LIU X D, DUAN X C, QIN Q, et al. Ionic liquid-assisted solvothermal 2014, 40(7): 11437-11440.
synthesis of oriented self-assembled Fe 3O 4 nanoparticles into [51] HOINKIS N, LUTZ H, LU H, et al. Assembly of iron oxide
monodisperse nanoflakes[J]. Crystengcomm, 2013, 15(17): 3284- nanosheets at the air-water interface by leucine-histidine peptides[J].
3287. RSC Advances, 2021, 11(45): 27965-27968.
[33] LIU X G, OR S W, LEUNG C M, et al. Microwave complex [52] YIN C J, GONG C H, CHU J W, et al. Ultrabroadband photodetectors
permeability of Fe 3O 4 nanoflake composites with and without up to 10.6 μm based on 2D Fe 3O 4 nanosheets[J]. Advanced Materials,
magnetic field-induced rotational orientation[J]. Journal of Applied 2020, 32(25): 202237.
Physics, 2013, 113(17): 173117. [53] HUANG S, ZHANG J W, YANG L, et al. Inward lithium-ion breathing
[34] KAMEI Y, WAKAYAMA K, MAKINOSE Y, et al. Syntheses of iron of hollow carbon spheres-encapsulated Fe 3O 4@C nanodisc with
oxide nanoplates by hydrothermal treatment of iron-oleate precursor superior lithium ion storage performance[J]. Journal of Alloys and
and their magnetization reversal[J]. Materials Science and Engineering B, Compounds, 2019, 800: 16-22.
2017, 223: 70-75. [54] SUN D H, SUN D X, HAO Y. Controlled synthesis of Fe 3O 4
[35] CHEN L Q, ZHOU Q, XIONG Q F, et al. Shape-evolution and nanosheets via P123 micelle template[J]. Materials Science Forum,
growth mechanism of Fe 3O 4 polyhedrons[J]. Advances in Materials 2010, 663/664/665: 1125-1128.
Science & Engineering, 2015, 2015: 1-7. [55] WANG X Y, LIAO Y L, ZHANG H W, et al. Low temperature-
[36] LI W J, YAO X Z, GUO Z, et al. Fe 3O 4 with novel nanoplate-stacked derived 3D hexagonal crystalline Fe 3O 4 nanoplates for water
structure: Surfactant-free hydrothermal synthesis and application in purification[J]. ACS Applied Materials & Interfaces, 2018, 10(4):
detection of heavy metal ions[J]. Journal of Electroanalytical Chemistry, 3644-3651.
2015, 749: 75-82. [56] HU D W, WANG Y M. Preparation of hexagonal Fe 3O 4 nanometer
[37] WAN Y H, SHI X Q, XIA H, et al. Synthesis and characterization of particles via weakly magnetic field assisted oxidation co-precipitation[J].
carbon-coated Fe 3O 4 nanoflakes as anode material for lithiumion Advanced Materials Research, 2012, 418/419/420: 286-292.
batteries[J]. Materials Research Bulletin, 2013, 48(11): 4791-4796. [57] WANG W X, LIU Y, YUE Y F. The confined interlayer growth of
[38] YANG Y, LIU X L, LV Y B, et al. Orientation mediated enhancement ultrathin two-dimensional Fe 3O 4 nanosheets with enriched oxygen
on magnetic hyperthermia of Fe 3O 4 nanodisc[J]. Advanced Functional vacancies for peroxymonosulfate activation[J]. ACS Catalysis, 2021,
Materials, 2014, 25(5): 812-820. 11(17): 11256-11265.
[39] YANG Y, YANG Y, XIAO W, et al. Shape-dependent microwave [58] YING H, CHEN T T, ZHANG C Y, et al. Regeneration of porous
permeability of Fe 3O 4 nanoparticles: A combined experimental and Fe 3O 4 nanosheets from deep eutectic solvent for high-performance
theoretical study[J]. Nanotechnology, 2015, 26(26): 265704. electrocatalytic nitrogen reduction[J]. Journal of Colloid and Interface
[40] YANG Y, LI M, WU Y P, et al. Size-dependent microwave absorption Science, 2021, 602: 64-72.
properties of Fe 3O 4 nanodiscs[J]. RSC Advances, 2016, 6(30): [59] MA M, ZHANG Y, GUO Z, et al. Facile synthesis of ultrathin
25444- 25448. magnetic iron oxide nanoplates by Schikorr reaction[J]. Nanoscale
[41] YANG Y, LI M, WU Y P, et al. Nanoscaled self-alignment of Fe 3O 4 Research Letters, 2013, 8: 1-7.
nanodiscs in ultrathin rGO films with engineered conductivity for [60] LAMER V K, DINEGAR R H. Nucleation rate and the kinetic of
electromagnetic interference shielding[J]. Nanoscale, 2016, 8(35): particle growth[J]. Journal of the American Chemical Society, 1950,
15989-15998. 72: 4847-4854.
[42] GAO G X, LU S Y, DONG B T, et al. One-pot synthesis of carbon [61] REISS H. The growth of uniform colloidal dispersions[J]. Journal of
coated Fe 3O 4 nanosheets with superior lithium storage capability[J]. Chemical Physics, 1951, 19(4): 482-487.
Journal of Materials Chemistry A, 2015, 3(8): 4716-4721. [62] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and