Page 59 - 《精细化工)》2023年第10期
P. 59

第 10 期                     张风帆,等:  磁性纳米片的制备及功能化应用研究进展                                   ·2137·


                 characterization of nearly  monodisperse CdE (E=sulfur, selenium,   [82]  LEE N, YOO D, LING D, et al. Iron oxide based nanoparticles for
                 tellurium) semiconductor nanocrystallites[J]. Journal of the American   multimodal imaging and magnetoresponsive therapy[J]. Chemical
                 Chemical Society, 1993, 115(19): 8706-8715.       Reviews, 2015, 115(19): 10637-10689.
            [63]  HUO Y, XIU S J, MENG  L Y,  et al. Solvothermal synthesis and   [83]  YANG L J, WANG Z Y, MA L C, et al. The roles of morphology on
                 applications of micro/nano carbons: A review[J]. Chemical Engineering   the relaxation rates of magnetic nanoparticles[J]. ACS Nano, 2018,
                 Journal, 2023, 451: 138572.                       12(5): 4605-4614.
            [64]  LUQUE DE CASTRO M D, PRIEGO-CAPOTE F.  Ultrasound-   [84]  SINGH K, OHLAN A, PHAM V H, et al. Nanostructured graphene/
                 assisted crystallization[J]. Ultrasonics  Sonochemistry, 2007, 14(6):   Fe 3O 4 incorporated polyaniline as a high performance shield against
                 717-724.                                          electromagnetic pollution[J]. Nanoscale, 2013, 5(6): 2411-2420.
            [65]  CHAI H F,  LI Y, LUO  Y F,  et al. Investigation on isopropanol   [85]  CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled
                 sensing properties of LnFeO 3 (Ln = Nd, Dy, Er) perovskite materials   carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon
                 synthesized by microwave-assisted hydrothermal method[J]. Applied   nanotube multiheterostructures for highly effective microwave absorption[J].
                 Surface Science, 2022, 601: 154292.               ACS Applied Materials & Interfaces, 2012, 4(12): 6949-6956.
            [66]  SURINWONG S, RUJIWATRA A.  Ultrasonic cavitation assisted   [86]  YANG R B, LIANG W F. Microwave properties of high-aspect-ratio
                 solvothermal synthesis of superparamagnetic zinc ferrite nanoparticles[J].   carbonyl iron/epoxy absorbers[J]. Journal of Applied Physics, 2011,
                 Particuology, 2013, 11(5): 588-593.               109(7): 07A311.
            [67]  BAZYLINSKI D, FRANKEL R.  Magnetosome formation in   [87]  ZHAO D L, LI X, SHEN Z M. Preparation and electromagnetic and
                 prokaryotes[J]. Nature Reviews Microbiology, 2004, 2: 217-230.   microwave  absorbing properties  of Fe-filled carbon nanotubes[J].
            [68]  CHENG J P, MA R, SHI D,  et al. Rapid growth of  magnetite   Journal of Alloys and Compounds, 2009, 471(1/2): 457-460.
                 nanoplates by  ultrasonic irradiation at low temperature[J]. Ultrasonics   [88]  TUCEK J, KEMP K C, KIM K S, et al. Iron-oxide-supported nanocarbon
                 Sonochemistry, 2010, 18(5): 1038-1042.            in lithium-ion batteries,  medical, catalytic, and environmental
            [69]  FAIVRE  D,  SCHÜLER  D.  Magnetotactic  bacteria  and  applications[J]. ACS Nano, 2014, 8(8): 7571-7612.
                 magnetosomes [J]. Chemical Reviews, 2008, 108(11): 4875-4898.   [89]  LIU D Q, WANG X, WANG X B, et al. Ultrathin nanoporous Fe 3O 4-
            [70]  LEE S M, CHO S N, CHEON J. Anisotropic shape control of colloidal   carbon nanosheets with enhanced supercapacitor performance[J].
                 inorganic nanocrystals[J]. Advanced Materials, 2003, 15: 441-444.   Journal of Materials Chemistry A, 2013, 1(6): 1952-1955.
            [71]  LI Z H, MA Y R, QI L M. Controlled synthesis  of  Mn xFe 1–xO   [90]  LIM B, JIN J, YOO J, et al. Fe 3O 4 nanosphere@microporous organic
                 concave nanocubes and highly branched cubic mesocrystals[J].   networks: Enhanced anode performances in lithium ion batteries
                 CrystEngComm, 2014, 16: 600-608.                  through carbonization[J]. Chemical Communications, 2014, 50(57):
            [72]  PUNTES V F, ZANCHET D, ERDONMEZ C K, et al. Synthesis of   7723-7726.
                 hcp-Co  nanodisks[J]. Joural  of  American Chemical Society, 2002,   [91]  WONG W W, WONG H Y, BADRUZZAMAN A B M, et al. Recent
                 124: 12874-12880.                                 advances in exploitation of nanomaterial for arsenic removal from
            [73]  BAAZIZ W, PICHON B P, FLEUTOT S, et al. Magnetic iron oxide   water: A review[J]. Nanotechnology, 2017, 28(4): 042001.
                 nanoparticles: Reproducible tuning  of the size and  nanosized-   [92]  LATA S, SAMADDER S R. Removal of arsenic from  water using
                 dependent composition, defects, and spin canting[J]. Joural of   nano adsorbents and challenges: A review[J]. Journal of Environmental
                 Physical Chemistry C, 2014, 118: 3795-3810.       Management, 2016, 166: 387-406.
            [74]  BATLLE X, LABARTA A. Finite-size effects in fine particles:   [93]  LIU S X, YU B, WANG S, et al. Preparation, surface functionalization
                 Magnetic andtransport propertie[J]. Joural of Physical D: Applied   and application of Fe 3O 4  magnetic nanoparticles[J]. Advances in
                 Physics, 2002, 35: R15-R42.                       Colloid and Interface Science, 2020, 281: 102165.
            [75]  DIMITROV D A,  WYSIN G M.  Effects of surface anisotropy on   [94]  ADEWUNMI A  A, KAMAL M S, SOLLING T I.  Application of
                 hysteresis in  fine  magnetic particles[J]. Physical Review B, 1994,   magnetic nanoparticles in demulsification: A review on  synthesis,
                 50(5): 3077-3084.                                 performance, recyclability, and challenges[J]. Journal of Petroleum
            [76]  KODAMA R H, BERKOWITZ A E. Atomic-scale magnetic modeling of   Science and Engineering, 2021, 196: 107680.
                 oxide nanoparticles[J]. Physical Review B, 1999, 59(9): 6321-6336.   [95]  ABD ELRAHMAN A A, MANSOUR F R. Targeted magnetic iron
            [77]  VICHERY C, MAURIN I, BONVILLE P, et al. Influence of protected   oxide nanoparticles: Preparation, functionalization and biomedical
                 annealing on the magnetic properties of  γ-Fe 2O 3 nanoparticles[J].   application[J]. Journal of Petroleum Science and Engineering, 2019,
                 Journal of Physical Chemistry C, 2012, 116: 16311-16318.   52: 702-712.
            [78]  MARTINEZ B, ROIG A, MOLINS E. Magnetic characterization of   [96]  XU D J, ZHANG H W, PENG J Y, et al. Passively mode-locked ytterbium-
                 γ-Fe 2O 3 nanoparticles fabricated by  aerosol pyrolysis[J]. Journal of   doped fiber laser based on Fe 3O 4 nanosheets saturable absorber[J].
                 Applied Physics, 1998, 83(6): 3256-3262.          Photonics, 2022, 9(5): 306.
            [79]  WU L H, MENDOZA-GARCIA A, LI Q,  et al. Organic  phase   [97]  DU H H,  ZHANG D D, XU R,  et al. Ferric oxide  nanosheet-
                 syntheses  of magnetic nanoparticles and their applications[J].   engineered Mg alloy for synergetic  osteosarcoma photothermal/
                 Chemical Reviews, 2016, 116(18): 10473-10512.     chemodynamic therapy[J]. Journal of Materials Science & Technology,
            [80]  LING D, LEE N,  HYEON  T. Chemical synthesis and assembly of   2023, 138: 203-213.
                 uniformly sized iron oxide nanoparticles for medical applications[J].   [98]  ZHANG F F, YANG Z H, YIN T  H,  et al. Study of Pickering
                 Accounts of Chemical Research, 2015, 48(5): 1276-1285.   emulsions stabilized by Janus magnetic nanosheets[J]. Colloids and
            [81]  SMITH B R, GAMBHIR S S. Nanomaterials for in vivo imaging[J].   Surfaces A-Physicochemical and Engineering Aspects, 2022, 654:
                 Chemical Reviews, 2017, 117(3): 901-986.          130194.
   54   55   56   57   58   59   60   61   62   63   64