Page 59 - 《精细化工)》2023年第10期
P. 59
第 10 期 张风帆,等: 磁性纳米片的制备及功能化应用研究进展 ·2137·
characterization of nearly monodisperse CdE (E=sulfur, selenium, [82] LEE N, YOO D, LING D, et al. Iron oxide based nanoparticles for
tellurium) semiconductor nanocrystallites[J]. Journal of the American multimodal imaging and magnetoresponsive therapy[J]. Chemical
Chemical Society, 1993, 115(19): 8706-8715. Reviews, 2015, 115(19): 10637-10689.
[63] HUO Y, XIU S J, MENG L Y, et al. Solvothermal synthesis and [83] YANG L J, WANG Z Y, MA L C, et al. The roles of morphology on
applications of micro/nano carbons: A review[J]. Chemical Engineering the relaxation rates of magnetic nanoparticles[J]. ACS Nano, 2018,
Journal, 2023, 451: 138572. 12(5): 4605-4614.
[64] LUQUE DE CASTRO M D, PRIEGO-CAPOTE F. Ultrasound- [84] SINGH K, OHLAN A, PHAM V H, et al. Nanostructured graphene/
assisted crystallization[J]. Ultrasonics Sonochemistry, 2007, 14(6): Fe 3O 4 incorporated polyaniline as a high performance shield against
717-724. electromagnetic pollution[J]. Nanoscale, 2013, 5(6): 2411-2420.
[65] CHAI H F, LI Y, LUO Y F, et al. Investigation on isopropanol [85] CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled
sensing properties of LnFeO 3 (Ln = Nd, Dy, Er) perovskite materials carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon
synthesized by microwave-assisted hydrothermal method[J]. Applied nanotube multiheterostructures for highly effective microwave absorption[J].
Surface Science, 2022, 601: 154292. ACS Applied Materials & Interfaces, 2012, 4(12): 6949-6956.
[66] SURINWONG S, RUJIWATRA A. Ultrasonic cavitation assisted [86] YANG R B, LIANG W F. Microwave properties of high-aspect-ratio
solvothermal synthesis of superparamagnetic zinc ferrite nanoparticles[J]. carbonyl iron/epoxy absorbers[J]. Journal of Applied Physics, 2011,
Particuology, 2013, 11(5): 588-593. 109(7): 07A311.
[67] BAZYLINSKI D, FRANKEL R. Magnetosome formation in [87] ZHAO D L, LI X, SHEN Z M. Preparation and electromagnetic and
prokaryotes[J]. Nature Reviews Microbiology, 2004, 2: 217-230. microwave absorbing properties of Fe-filled carbon nanotubes[J].
[68] CHENG J P, MA R, SHI D, et al. Rapid growth of magnetite Journal of Alloys and Compounds, 2009, 471(1/2): 457-460.
nanoplates by ultrasonic irradiation at low temperature[J]. Ultrasonics [88] TUCEK J, KEMP K C, KIM K S, et al. Iron-oxide-supported nanocarbon
Sonochemistry, 2010, 18(5): 1038-1042. in lithium-ion batteries, medical, catalytic, and environmental
[69] FAIVRE D, SCHÜLER D. Magnetotactic bacteria and applications[J]. ACS Nano, 2014, 8(8): 7571-7612.
magnetosomes [J]. Chemical Reviews, 2008, 108(11): 4875-4898. [89] LIU D Q, WANG X, WANG X B, et al. Ultrathin nanoporous Fe 3O 4-
[70] LEE S M, CHO S N, CHEON J. Anisotropic shape control of colloidal carbon nanosheets with enhanced supercapacitor performance[J].
inorganic nanocrystals[J]. Advanced Materials, 2003, 15: 441-444. Journal of Materials Chemistry A, 2013, 1(6): 1952-1955.
[71] LI Z H, MA Y R, QI L M. Controlled synthesis of Mn xFe 1–xO [90] LIM B, JIN J, YOO J, et al. Fe 3O 4 nanosphere@microporous organic
concave nanocubes and highly branched cubic mesocrystals[J]. networks: Enhanced anode performances in lithium ion batteries
CrystEngComm, 2014, 16: 600-608. through carbonization[J]. Chemical Communications, 2014, 50(57):
[72] PUNTES V F, ZANCHET D, ERDONMEZ C K, et al. Synthesis of 7723-7726.
hcp-Co nanodisks[J]. Joural of American Chemical Society, 2002, [91] WONG W W, WONG H Y, BADRUZZAMAN A B M, et al. Recent
124: 12874-12880. advances in exploitation of nanomaterial for arsenic removal from
[73] BAAZIZ W, PICHON B P, FLEUTOT S, et al. Magnetic iron oxide water: A review[J]. Nanotechnology, 2017, 28(4): 042001.
nanoparticles: Reproducible tuning of the size and nanosized- [92] LATA S, SAMADDER S R. Removal of arsenic from water using
dependent composition, defects, and spin canting[J]. Joural of nano adsorbents and challenges: A review[J]. Journal of Environmental
Physical Chemistry C, 2014, 118: 3795-3810. Management, 2016, 166: 387-406.
[74] BATLLE X, LABARTA A. Finite-size effects in fine particles: [93] LIU S X, YU B, WANG S, et al. Preparation, surface functionalization
Magnetic andtransport propertie[J]. Joural of Physical D: Applied and application of Fe 3O 4 magnetic nanoparticles[J]. Advances in
Physics, 2002, 35: R15-R42. Colloid and Interface Science, 2020, 281: 102165.
[75] DIMITROV D A, WYSIN G M. Effects of surface anisotropy on [94] ADEWUNMI A A, KAMAL M S, SOLLING T I. Application of
hysteresis in fine magnetic particles[J]. Physical Review B, 1994, magnetic nanoparticles in demulsification: A review on synthesis,
50(5): 3077-3084. performance, recyclability, and challenges[J]. Journal of Petroleum
[76] KODAMA R H, BERKOWITZ A E. Atomic-scale magnetic modeling of Science and Engineering, 2021, 196: 107680.
oxide nanoparticles[J]. Physical Review B, 1999, 59(9): 6321-6336. [95] ABD ELRAHMAN A A, MANSOUR F R. Targeted magnetic iron
[77] VICHERY C, MAURIN I, BONVILLE P, et al. Influence of protected oxide nanoparticles: Preparation, functionalization and biomedical
annealing on the magnetic properties of γ-Fe 2O 3 nanoparticles[J]. application[J]. Journal of Petroleum Science and Engineering, 2019,
Journal of Physical Chemistry C, 2012, 116: 16311-16318. 52: 702-712.
[78] MARTINEZ B, ROIG A, MOLINS E. Magnetic characterization of [96] XU D J, ZHANG H W, PENG J Y, et al. Passively mode-locked ytterbium-
γ-Fe 2O 3 nanoparticles fabricated by aerosol pyrolysis[J]. Journal of doped fiber laser based on Fe 3O 4 nanosheets saturable absorber[J].
Applied Physics, 1998, 83(6): 3256-3262. Photonics, 2022, 9(5): 306.
[79] WU L H, MENDOZA-GARCIA A, LI Q, et al. Organic phase [97] DU H H, ZHANG D D, XU R, et al. Ferric oxide nanosheet-
syntheses of magnetic nanoparticles and their applications[J]. engineered Mg alloy for synergetic osteosarcoma photothermal/
Chemical Reviews, 2016, 116(18): 10473-10512. chemodynamic therapy[J]. Journal of Materials Science & Technology,
[80] LING D, LEE N, HYEON T. Chemical synthesis and assembly of 2023, 138: 203-213.
uniformly sized iron oxide nanoparticles for medical applications[J]. [98] ZHANG F F, YANG Z H, YIN T H, et al. Study of Pickering
Accounts of Chemical Research, 2015, 48(5): 1276-1285. emulsions stabilized by Janus magnetic nanosheets[J]. Colloids and
[81] SMITH B R, GAMBHIR S S. Nanomaterials for in vivo imaging[J]. Surfaces A-Physicochemical and Engineering Aspects, 2022, 654:
Chemical Reviews, 2017, 117(3): 901-986. 130194.