Page 108 - 《精细化工》2023年第11期
P. 108
·2420· 精细化工 FINE CHEMICALS 第 40 卷
[4] MIAO Z Y, SONG Y, DONG Y J, et al. Intrinsic conductive cellulose [18] REN J, WANG X M, ZHAO L L, et al. Double network gelatin/
nanofiber induce room-temperature reversible and robust polyvinyl chitosan hydrogel effective removal of dyes from aqueous
alcohol hydrogel for multifunctional self-healable biosensors[J]. solutions[J]. Journal of Polymers and the Environment, 2022, 30(5):
Nano Research, 2022, 16(2): 3156-3167. 2007-2021.
[5] WANG K, ZHANG X, SUN X Z, et al. Conducting polymer [19] WU X M, LIU Y M, WANG W H, et al. Improved mechanical and
hydrogel materials for high-performance flexible solid-state thermal properties of gelatin films using a nano inorganic filler[J].
supercapacitors[J]. Science China Materials, 2016, 59(6): 412-420. Journal of Food Process Engineering, 2017, 40(3): e12469.
[6] WANG X C (王学川), GAN T (甘婷), ZHU X (朱兴). Classification [20] NASSIRI R, MOHAMMADI N A. Antimicrobial and barrier
of functional gelatin-based hydrogel and research progress[J]. Fine properties of bovine gelatin films reinforced by nano TiO 2[J]. Journal
Chemicals (精细化工), 2021, 38(2): 217-225, 248. of Chemical Health Risks, 2013, 3(3): 21-28.
[7] ZHANG X H, WEI J J, LU S C, et al. Mussel-inspired conductive [21] YUE Y N, LIU J X, GAO S Y, et al. Ionically conductive
hydrogel with self-healing, adhesive, and antibacterial properties for gelatin-based hybrid composite hydrogels with high mechanical
wearable monitoring[J]. ACS Applied Polymer Materials, 2021, strength, self-healing, and freezing-tolerant properties[J]. European
3(11): 5798-5807. Polymer Journal, 2022, 172: 111230.
[8] MA D, WU X X, WANG Y G, et al. Wearable, antifreezing, and [22] YOU L J, SHI X M, CHENG J, et al. Flexible porous gelatin/
healable epidermal sensor assembled from long-lasting moist polypyrrole/reduction graphene oxide organohydrogel for wearable
conductive nanocomposite organohydrogel[J]. ACS Applied electronics[J]. Journal of Colloid and Interface Science, 2022, 625:
Materials & Interfaces, 2019, 11(44): 41701-41709. 197-209.
[9] XIA S, SONG S X, JIA F, et al. A flexible, adhesive and self-healable [23] NAZAR V, KASHI M, HAGHBIN N M, et al. Gelatin hydrogel
hydrogel-based wearable strain sensor for human motion and reinforced by graphene oxide grafted chitosan for cartilage tissue
physiological signal monitoring[J]. Journal of Materials Chemistry B, engineering application[J]. International Journal of Polymeric
2019, 7(30): 4638-4648. Materials and Polymeric Biomaterials, 2022, 72(14): 1-12. .
[10] LI Z K, ZHANG S M, CHEN Y H, et al. Gelatin methacryloyl-based [24] PIAO Y Z, CHEN B Q. One-pot synthesis and characterization of
tactile sensors for medical wearables[J]. Advanced Functional reduced graphene oxide-gelatin nanocomposite hydrogels[J]. RSC
Materials, 2020, 30(49): 2003601. Advances, 2016, 6(8): 6171-6181.
[11] HUANG J, ZHAO M, CAI Y, et al. A dual-mode wearable sensor [25] RADON A, WLODARCZYK P, ŁUKOWIEC D. Structure,
based on bacterial cellulose reinforced hydrogels for highly sensitive temperature and frequency dependent electrical conductivity of
strain/pressure sensing[J]. Advanced Electronic Materials, 2020, oxidized and reduced electrochemically exfoliated graphite[J].
6(1): 1900934. Physica E: Low-dimensional Systems and Nanostructures, 2018, 99:
[12] COAOLA A, CHIAPPONE A, MARTINENGO C, et al. Gelatin type 82-90.
A from porcine skin used as co-initiator in a radical photo-initiating [26] PARKER N G, POVEY M J W. Ultrasonic study of the gelation of
system[J]. Polymers, 2019, 11(11): 1901. gelatin: Phase diagram, hysteresis and kinetics[J]. Food
[13] HE L, GAO Y, HAN L, et al. Enhanced gelling performance of Hydrocolloids, 2012, 26(1): 99-107.
oxhide gelatin prepared from cowhide scrap by high pressure-assisted [27] CASANOVA F, MOHAMMADIFAR A M, JAHROMI M, et al.
extraction[J]. Journal of Food Science, 2021, 86(6): 2525-2538. . Physico-chemical, structural and techno-functional properties of
[14] LU J, FANG Q, MA N, et al. Gelation behaviour of fish skin gelatin gelatin from saithe (Pollachius virens) skin[J]. International Journal
in the presence of methanol-water and ethanol-water solvent of Biological Macromolecules, 2020, 156: 918-927.
system[J]. International Journal of Food Science & Technology, [28] SHA X M (沙小梅), TU Z C (涂宗财), HUANG T (黄涛), et al.
2022, 57(3): 1598-1608. . Effect of fish scale storage methods on functional properties of
[15] UGRINOVIC V, PANIC V, SPASOJEVIC P, et al. Strong and tough, gelatin from bighead carp scale [J]. Food Science(食品科学), 2018,
pH sensible, interpenetrating network hydrogels based on gelatin and 39(17): 25-31.
poly(methacrylic acid)[J]. Polymer Engineering & Science, 2022, [29] WEIS J E, VEJPRAVOVA J, VERHAGEN T, et al. Surface-
62(3): 622-636. enhanced Raman spectra on graphene[J]. Journal of Raman
[16] KIM S, CHOI Y, LEE W, et al. Fabrication parameter-dependent Spectroscopy, 2018, 49(1): 168-173.
physico-chemical properties of thiolated gelatin/PEGDA [30] HUANG Y F (黄远芬), WANG X (王欣), LIU B L (刘宝林). Gel
interpenetrating network hydrogels[J]. Tissue Engineering and properties of gelatin system affected by treatment conditions [J].
Regenerative Medicine, 2021, 19(2): 1-11. Jiangsu Journal of Agricultural Sciences (江苏农业学报), 2015,
[17] LU J, HU O D, GU J F, et al. Tough and anti-fatigue double network 31(3): 673-678.
gelatin/polyacrylamide/DMSO/Na 2SO 4 ionic conductive organohydrogel [31] LI Y S, HU C X, LAN J, et al. Hydrogel-based temperature sensor
for flexible strain sensor[J]. European Polymer Journal, 2022, 168: with water retention, frost resistance and remoldability[J]. Polymer,
111099. 2020, 186: 122027.
(上接第 2402 页) inverse opals[J]. Journal of Physics D Applied Physics, 2020, 54(12):
[16] GOERLITZER E S A, TAYLOR R N K, VOGEL N. Bioinspired 125104.
photonic pigments from colloidal self-assembly[J]. Advanced Materials, [19] CHEN X Y, XU H B, HUA C X, et al. Synthesis of silica
2018, 30(28): 17066541-17066545. microspheres-inspired by the formation of ice crystals-with high
[17] DOSTA M, BISTRECK K, SKORYCH V, et al. Mesh-free homogeneous particle sizes and their applications in photonic
micromechanical modeling of inverse opal structures[J]. International crystals[J]. Materials, 2018, 11(10): 2017.
Journal of Mechanical Sciences, 2021, 204: 106577. [20] ZHAO C Y (赵彩云). The preparation and properties of colored
[18] ROUT D, KUMAR G, VIJAYA R. Concurrent deep UV diffractions polyurethane elastomer by in-situ polymerization[D]. Wuxi: Jiangnan
enabled by the Bragg condition and crystal symmetry in silica University (江南大学), 2018.