Page 209 - 《精细化工》2023年第11期
P. 209

第 11 期                   董向涛,等:  含氨基酸结构的磺酰胺衍生物合成与生物活性                                   ·2521·


            Ⅲb、Ⅲc <  Ⅲa,对所测细菌的抑制作用:Ⅲk、Ⅲl≥                      [5]   ABDEL-AZIZ A M, ANGELI A, EL-AZAB A S, et al. Synthesis and
            Ⅲj。(3)大多邻氟取代的目标物抗菌活性更显著,                               anti-inflammatory activity of sulfonamides and carboxylates incorporating
                                                                   trimellitimides: Dual cyclooxygenase/ carbonic anhydrase inhibitory
            如抗菌活性:Ⅲn >Ⅲo,Ⅲb≥Ⅲc,Ⅲh≥Ⅲi,有可                            actions[J]. Bioorganic Chemistry, 2019, 84: 260-268.
            能是邻位的空间效应所致。(4)大多抗菌活性化合                            [6]   LU Y J (卢言菊), ZHAO Z D (赵振东), CHEN Y X (陈玉湘), et al.
                                                                   Synthesis and antitumor activity of isopimaric heterocyclic sulfonamides
            物对所测耐药菌有较显著的抑制作用,不产生耐药
                                                                   derivatives [J]. Fine Chemicals (精细化工), 2021, 38(3): 578-584.
            性。(5)部分化合物的抗 E. coli 和 FREC 活性优于                   [7]   BONARDI A, NOCENTINI A, BUA S, et al. Sulfonamide inhibitors
            前期设计合成的不含氨基酸结构的衍生物                  [11-13] ,如化        of  human carbonic anhydrases designed through a three-tails
                                                                   approach: Improving ligand/isoform matching and selectivity of
            合物Ⅲb、Ⅲc、Ⅲi、Ⅲm 和Ⅲn,表明功能氨基酸                              action[J]. Journal of Medicinal Chemistry, 2020, 63: 7422-7444.
            的引入对提高目标物的抗菌活性有重要影响,具体                             [8]   KONAKLIEVA M I. Addressing antimicrobial resistance through
            原因有待进一步研究。                                             new medicinal and synthetic chemistry strategies[J]. Slas Discovery,
                                                                   2019, 24(4): 419-439.
                                                               [9]   JACKSON N, CZAPLEWSKI L, PIDDOCK L J V. Discovery and
            3   结论                                                 development of new antibacterial drugs: Learning from
                                                                   experience[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(6):
                 依据分子杂交策略设计合成的含氨基酸结构的                              1452-1459.
            磺酰胺衍生物有较好的抗菌活性,对 E. coli 和 FREC                    [10]  BERUBE G. An overview of molecular hybrids in drug discovery[J].
                                                                   Expert Opinion on Drug Discovery, 2016, 11(3): 281-305.
            的抑制作用最为显著,尤其是化合物Ⅲb、Ⅲc、Ⅲm 和                         [11]  YANG J Q (杨家强), DENG  L (邓玲), AN J L (安家丽),  et al.
            Ⅲn 对两者的抗菌活性不低于对照药苯唑西林。同                                Synthesis and antibacterial activity of sulfanilamide derivatives
            时,含不同氨基酸结构的目标物对抗菌活性有明显                                 containing phosphonate  moiety[J]. Fine Chemicals (精细化工),
                                                                   2019, 36(9): 1869-1873.
            影响,后续有必要拓展氨基酸的种类进行研究。另                             [12]  YANG J Q (杨家强), LEI Y  Y (雷延燕), YANG  H (杨红),  et al.
            外,氨基膦酸酯结构中苯环取代基的不同也影响该                                 Synthesis and bioactivity of novel phosphonate derivatives containing
            类衍生物的活性,也值得后续进一步深入研究。                                  thiophene and sulfonamide group[J]. Chinese Pharmaceutical Journal
                                                                   (中国药学杂志), 2019, 54(24): 2055-2059.
                                                               [13]  YANG J Q (杨家强), WANG Y (王越), ZHOU X R (周绪容), et al.
            参考文献:
                                                                   Synthesis and antibacterial activities of novel sulfonamide derivatives
            [1]   GADAD  A K, MAHAJANSHETTI C S, NIMBALKAR S,  et al.   containing a fused-ring[J]. Acta Pharmaceutica Sinica (药学学报),
                 Synthesis and antibacterial activity of some 5-guanylhydrazone/   2021, 56(3): 835-840.
                 thiocyanato-6-arylimidazo[2,1-b]-1,3,4-thiadiazole-2-sulfonamide   [14]  JIN X P (金学平), TANG Q M (唐启明), YU L (余磊), et al. Amino
                 derivatives[J]. European Journal of Medicinal Chemistry, 2000, 35:   acid derivatives-A  kind of antibacterial agent with  high safety[J].
                 853-857.                                          Chemistry & Bioengineering (化学与生物工程), 2019, 36(11): 8-11.
            [2]   AJEET A, MISHRA A K, KUMAR A. Recent advances in development   [15]  LI T (李涛), NIU Y H (牛有红), YE X S (叶新山),  et al. Recent
                 of sulfonamide derivatives and their pharmacological effects-A   advances on non-peptide or small molecule mimics of antimicrobial
                 review[J]. Journal of Pharmacological Sciences, 2015, 3(1): 18-24.   peptides[J]. Chinese Journal of Medicinal Chemistry (中国药物化学
            [3]   KANDA Y, KAWANISHI Y, ODA K, et al. Synthesis and structure-   杂志), 2020, 30(3): 160-176.
                 activity relationships of potent and  orally active sulfonamide ETB   [16]  TAN P, FU H Y, MA X. Design, optimization, and nanotechnology of
                 selective antagonists[J]. Bioorganic & Medicinal Chemistry, 2001,   antimicrobial peptides: From exploration  to applications[J]. Nano
                 9(4): 897-907.                                    Today, 2021, 39: 101229.
            [4]   WAN Y C, FANG G Q, CHEN H J, et al. Sulfonamide derivatives as   [17]  SHEN G X (沈关心). Microbiology  and lmmunology[M]. Beijing:
                 potential anticancer agents and their SARs elucidation[J]. European   People's Medical Publishing House  (人民卫生出版社), 2007:
                 Journal of Medicinal Chemistry, 2021, 226: 113837.   326-328.





            (上接第 2515 页)                                           Universities (高校化学工程学报), 2016, 30(4): 971-977.
                                                               [18]  SARANGI D, SAMANTARAY A C, SAHU R, et al. Interactions of
            [15]  ZHU Q, ZHANG B, WANG  Y,  et al. Self-assembled micelles   cetyltrimethyl ammonium bromide with 1,3-dioxolane in water: A
                prepared from poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)   study of viscosity and volumetric properties[J]. Asian Journal of
                block copolymers for sustained release of valsartan[J]. Polymers for   Chemistry, 2020, 32(1): 53-58.
                Advanced Technologies, 2021, 32(3): 1262-1271.   [19]  WANG H J (王环江), YANG Q L (杨启亮), ZHANG Y C (张雨晨),
            [16]  PAN G  Y ( 潘光 耀 ) , NI C  H ( 倪才 华 ). Preparation  of   et al. Synthesis and evaluation  of in-situ grafted carbon black
                polycaprolactone-polyethylene glycol amphiphilic copolymer nanomicelles   nanoparticle as demulsifier for treating crude oil-in-water emulsions
                by degradation[J]. Applied Chemical  Industry (应用化工) , 2021,   [J]. Materials Reports (材料导报), 2023, 37(4): 241-246.
                41(6): 1041-1043.                              [20]  TATIANA I, SPIRIDONOVA, SERGEI I, et al. Investigation of the
            [17]  TENG S (滕双), WANG Y P (王艳萍), HAO H (郝红). Preparation   size distribution  for diffusion-controlled drug  release  from drug
                and performance study of polylactic acid-polyethylene glycol block   delivery systems of various geometries[J]. Journal of Pharmaceutical
                copolymer micelles[J]. Journal of Chemical Engineering of Chinese   Sciences, 2019, 108(8): 2690-2697.
   204   205   206   207   208   209   210   211   212   213   214