Page 209 - 《精细化工》2023年第11期
P. 209
第 11 期 董向涛,等: 含氨基酸结构的磺酰胺衍生物合成与生物活性 ·2521·
Ⅲb、Ⅲc < Ⅲa,对所测细菌的抑制作用:Ⅲk、Ⅲl≥ [5] ABDEL-AZIZ A M, ANGELI A, EL-AZAB A S, et al. Synthesis and
Ⅲj。(3)大多邻氟取代的目标物抗菌活性更显著, anti-inflammatory activity of sulfonamides and carboxylates incorporating
trimellitimides: Dual cyclooxygenase/ carbonic anhydrase inhibitory
如抗菌活性:Ⅲn >Ⅲo,Ⅲb≥Ⅲc,Ⅲh≥Ⅲi,有可 actions[J]. Bioorganic Chemistry, 2019, 84: 260-268.
能是邻位的空间效应所致。(4)大多抗菌活性化合 [6] LU Y J (卢言菊), ZHAO Z D (赵振东), CHEN Y X (陈玉湘), et al.
Synthesis and antitumor activity of isopimaric heterocyclic sulfonamides
物对所测耐药菌有较显著的抑制作用,不产生耐药
derivatives [J]. Fine Chemicals (精细化工), 2021, 38(3): 578-584.
性。(5)部分化合物的抗 E. coli 和 FREC 活性优于 [7] BONARDI A, NOCENTINI A, BUA S, et al. Sulfonamide inhibitors
前期设计合成的不含氨基酸结构的衍生物 [11-13] ,如化 of human carbonic anhydrases designed through a three-tails
approach: Improving ligand/isoform matching and selectivity of
合物Ⅲb、Ⅲc、Ⅲi、Ⅲm 和Ⅲn,表明功能氨基酸 action[J]. Journal of Medicinal Chemistry, 2020, 63: 7422-7444.
的引入对提高目标物的抗菌活性有重要影响,具体 [8] KONAKLIEVA M I. Addressing antimicrobial resistance through
原因有待进一步研究。 new medicinal and synthetic chemistry strategies[J]. Slas Discovery,
2019, 24(4): 419-439.
[9] JACKSON N, CZAPLEWSKI L, PIDDOCK L J V. Discovery and
3 结论 development of new antibacterial drugs: Learning from
experience[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(6):
依据分子杂交策略设计合成的含氨基酸结构的 1452-1459.
磺酰胺衍生物有较好的抗菌活性,对 E. coli 和 FREC [10] BERUBE G. An overview of molecular hybrids in drug discovery[J].
Expert Opinion on Drug Discovery, 2016, 11(3): 281-305.
的抑制作用最为显著,尤其是化合物Ⅲb、Ⅲc、Ⅲm 和 [11] YANG J Q (杨家强), DENG L (邓玲), AN J L (安家丽), et al.
Ⅲn 对两者的抗菌活性不低于对照药苯唑西林。同 Synthesis and antibacterial activity of sulfanilamide derivatives
时,含不同氨基酸结构的目标物对抗菌活性有明显 containing phosphonate moiety[J]. Fine Chemicals (精细化工),
2019, 36(9): 1869-1873.
影响,后续有必要拓展氨基酸的种类进行研究。另 [12] YANG J Q (杨家强), LEI Y Y (雷延燕), YANG H (杨红), et al.
外,氨基膦酸酯结构中苯环取代基的不同也影响该 Synthesis and bioactivity of novel phosphonate derivatives containing
类衍生物的活性,也值得后续进一步深入研究。 thiophene and sulfonamide group[J]. Chinese Pharmaceutical Journal
(中国药学杂志), 2019, 54(24): 2055-2059.
[13] YANG J Q (杨家强), WANG Y (王越), ZHOU X R (周绪容), et al.
参考文献:
Synthesis and antibacterial activities of novel sulfonamide derivatives
[1] GADAD A K, MAHAJANSHETTI C S, NIMBALKAR S, et al. containing a fused-ring[J]. Acta Pharmaceutica Sinica (药学学报),
Synthesis and antibacterial activity of some 5-guanylhydrazone/ 2021, 56(3): 835-840.
thiocyanato-6-arylimidazo[2,1-b]-1,3,4-thiadiazole-2-sulfonamide [14] JIN X P (金学平), TANG Q M (唐启明), YU L (余磊), et al. Amino
derivatives[J]. European Journal of Medicinal Chemistry, 2000, 35: acid derivatives-A kind of antibacterial agent with high safety[J].
853-857. Chemistry & Bioengineering (化学与生物工程), 2019, 36(11): 8-11.
[2] AJEET A, MISHRA A K, KUMAR A. Recent advances in development [15] LI T (李涛), NIU Y H (牛有红), YE X S (叶新山), et al. Recent
of sulfonamide derivatives and their pharmacological effects-A advances on non-peptide or small molecule mimics of antimicrobial
review[J]. Journal of Pharmacological Sciences, 2015, 3(1): 18-24. peptides[J]. Chinese Journal of Medicinal Chemistry (中国药物化学
[3] KANDA Y, KAWANISHI Y, ODA K, et al. Synthesis and structure- 杂志), 2020, 30(3): 160-176.
activity relationships of potent and orally active sulfonamide ETB [16] TAN P, FU H Y, MA X. Design, optimization, and nanotechnology of
selective antagonists[J]. Bioorganic & Medicinal Chemistry, 2001, antimicrobial peptides: From exploration to applications[J]. Nano
9(4): 897-907. Today, 2021, 39: 101229.
[4] WAN Y C, FANG G Q, CHEN H J, et al. Sulfonamide derivatives as [17] SHEN G X (沈关心). Microbiology and lmmunology[M]. Beijing:
potential anticancer agents and their SARs elucidation[J]. European People's Medical Publishing House (人民卫生出版社), 2007:
Journal of Medicinal Chemistry, 2021, 226: 113837. 326-328.
(上接第 2515 页) Universities (高校化学工程学报), 2016, 30(4): 971-977.
[18] SARANGI D, SAMANTARAY A C, SAHU R, et al. Interactions of
[15] ZHU Q, ZHANG B, WANG Y, et al. Self-assembled micelles cetyltrimethyl ammonium bromide with 1,3-dioxolane in water: A
prepared from poly(D,L-lactide-co-glycolide)-poly(ethylene glycol) study of viscosity and volumetric properties[J]. Asian Journal of
block copolymers for sustained release of valsartan[J]. Polymers for Chemistry, 2020, 32(1): 53-58.
Advanced Technologies, 2021, 32(3): 1262-1271. [19] WANG H J (王环江), YANG Q L (杨启亮), ZHANG Y C (张雨晨),
[16] PAN G Y ( 潘光 耀 ) , NI C H ( 倪才 华 ). Preparation of et al. Synthesis and evaluation of in-situ grafted carbon black
polycaprolactone-polyethylene glycol amphiphilic copolymer nanomicelles nanoparticle as demulsifier for treating crude oil-in-water emulsions
by degradation[J]. Applied Chemical Industry (应用化工) , 2021, [J]. Materials Reports (材料导报), 2023, 37(4): 241-246.
41(6): 1041-1043. [20] TATIANA I, SPIRIDONOVA, SERGEI I, et al. Investigation of the
[17] TENG S (滕双), WANG Y P (王艳萍), HAO H (郝红). Preparation size distribution for diffusion-controlled drug release from drug
and performance study of polylactic acid-polyethylene glycol block delivery systems of various geometries[J]. Journal of Pharmaceutical
copolymer micelles[J]. Journal of Chemical Engineering of Chinese Sciences, 2019, 108(8): 2690-2697.