Page 43 - 《精细化工》2023年第11期
P. 43
第 11 期 张 琪,等: 有机废水处理中芬顿氧化反应机制研究进展 ·2355·
工艺设计提供理论支撑。借此展望芬顿反应的发展 heterogeneous Fenton-like reaction[J]. Separation and Purification
方向: Technology, 2018, 201: 238-243.
[15] BRAY W C, GORIN M H. Ferryl ion, a compound of tetravalent
(1)寻找绿色、可降解的有机鳌合配体,减少 iron[J]. Journal of the American Chemical Society, 1932, 54: 2124-
均相芬顿的二次污染;将光助芬顿技术所需要的光 2125.
[16] BOSSMANN S H, OLIVEROS E, GÖB S, et al. New evidence
照从紫外光拓展至自然光,设计高效太阳能反应堆
against hydroxyl radicals as reactive intermediates in the thermal and
的芬顿技术;构建新型反应器,简化电助芬顿反应 photochemically enhanced Fenton reactions[J]. Journal of Physical
工艺;设计高效的固体催化剂,构筑纳米或单原子 Chemistry A, 1998, 102: 5542-5550.
[17] KREMER M L. Mechanism of the Fenton reaction. Evidence for a
分散的活性中心,提高多相芬顿反应的活性。此外,
new intermediate[J]. Physical Chemistry: Chemical Physics, 1999, 1:
可以结合两种或多种芬顿技术联合处理污水。 3595-3605.
(2)随着现代科学技术的发展,利用自旋共振 [18] KREMER M L. The Fenton reaction dependence of the rate on
pH[J]. Journal of Physical Chemistry A, 2003, 107: 1734-1741.
波谱、电子顺磁共振波谱、原位红外光谱和原位紫 [19] ENSING B, BUDA F, BAERENDS E J, et al. Fenton-like chemistry
外拉曼光谱等先进仪器来检测芬顿的反应过程、物 in water: Oxidation catalysis by Fe(Ⅲ) and H 2O 2[J]. Journal of
质结构及形态和高活性中间体等,结合理论模拟计 Physical Chemistry A, 2003, 107: 5722-5731.
[20] HABER F, WEISS J. The catalytic decomposition of hydrogen
算,可更加深入地探索芬顿反应机制,明确有机污 peroxide by iron salts[J]. Proceedings of the Royal Society of
染物氧化降解路径,正确地指导研究方向,更好地 London A, 1934, 147: 332-351.
[21] ROSEN G M, TSAI P, BARTH E D, et al. A one-step synthesis of
利用芬顿反应解决实际水污染问题。
2-(2-pyridyl)-3H-indol-3-one N-oxide: Is it an efficient spin trap for
hydroxyl radical?[J]. The Journal of Organic Chemistry, 2000,
参考文献:
65(14): 4460-4463.
[1] HAMD W S, DUTTA J. Nanomaterials for the detection and removal [22] LEE S, OH J, PARK Y. Degradation of phenol with Fenton-like
of wastewater pollutants[M]. Amsterdam: Elsevier, 2020: 303-330. treatment by using heterogeneous catalyst (modified iron oxide) and
[2] ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton hydrogen peroxide[J]. Bulletin of the Korean Chemical Society,
process for organic wastewater treatment based on optimization 2006, 27(4): 489-494.
perspective[J]. Science of the Total Environment, 2019, 670: 110- [23] HAN S K, HWANG T M, YOON Y, et al. Evidence of singlet oxygen
121. and hydroxyl radical formation in aqueous goethite suspension using
[3] OKI T, KANAE S. Global hydrological cycles and world water spin-trapping electron paramagnetic resonance (EPR)[J]. Chemosphere,
resources[J]. Science, 2006, 313(5790): 1068-1072. 2011, 84(8): 1095-1101.
[4] ESCAP U N. Water security & the global water agenda: A UN-water [24] VOINOV M A, PAGAN J O S, MORRISON E, et al. Surface-
analytical brief[M].Tokyo: United Nations University, 2013: 1-37. mediated production of hydroxyl radicals as a mechanism of iron
[5] BORA T, DUTTA J. Applications of nanotechnology in wastewater oxide nanoparticle biotoxicity[J]. Journal of the American Chemical
treatment: A review[J]. Journal of Nanoscience and Nanotechnology, Society, 2011, 133(1): 35-41.
2014, 14(1): 613-626. [25] PIGNATELLO J J, OLIVEROS E, MACKAY A, et al. Advanced
[6] POURAN S R, AZIZ A R A, DAUD W M A W. Review on the main oxidation processes for organic contaminant destruction based on the
advances in photo-Fenton oxidation system for recalcitrant Fenton reaction and related chemistry[J]. Critical Reviews in
wastewaters[J]. Journal of Industrial and Engineering Chemistry, Environmental Science and Technology, 2006, 36(1): 1-84.
2015, 21: 53-69. [26] MUNOZ M, DE PEDRO Z M, CASAS J A, et al. Preparation of
[7] BARUAH S, PAL S K, DUTTA J, et al. Nanostructured zinc oxide magnetite-based catalysts and their application in heterogeneous
for water treatment[J]. Nanoscience & Nanotechnology-Asia, 2012, Fenton oxidation—A review[J]. Applied Catalysis B: Environmental,
2(2): 90-102. 2015, 176/177: 249-265.
[8] HAMD W, COBO S, FIZE J, et al. Mesoporous a Fe 2O 3 thin Films [27] DE LUNA M D G, BRIONES R M, SU C C, et al. Kinetics of
synthesized via the sol-gel for light-driven water oxidation[J]. acetaminophen degradation by Fenton oxidation in a fluidized-bed
Physical Chemistry Chemical Physics, 2012, 14: 13224-13232. reactor[J]. Chemosphere, 2013, 90(4): 1444-1448.
[9] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems [28] XIE X D, CHENG H F. A simple treatment method for phenylarsenic
for activating H 2O 2 in advanced oxidation processes[J]. Journal of compounds: Oxidation by ferrate (Ⅵ) and simultaneous removal of
Hazardous Materials, 2014, 275: 121-135. the arsenate released with in situ formed Fe (Ⅲ) oxide-hydroxide[J].
[10] SHARMA A, AHMAD J, FLORA S J S, et al. Application of Environment International, 2019, 127: 730-741.
advanced oxidation processes and toxicity assessment of transformation [29] SHARMA V K, ZBORIL R, VARMA R S. Ferrates: Greener
products[J]. Environmental Research, 2018, 167: 223-233. oxidants with multimodal action in water treatment technologies[J].
[11] CHEN L W, MA J, LI X C, et al. Strong enhancement on Fenton Accounts of Chemical Research, 2015, 48(2): 182-191.
oxidation by addition of hydroxylamine to accelerate the ferric and [30] SHARMA V K, CHEN L, ZBORIL R. Review on high valent FeⅥ
ferrous iron cycles[J]. Environmental Science & Technology, 2011, (ferrate): A sustainable green oxidant in organic chemistry and
45(9): 3925-3930. transformation of pharmaceuticals[J]. ACS Sustainable Chemistry &
[12] WANG Z J, DU Y, ZHOU P, et al. Strategies based on electron Engineering, 2016, 4(1): 18-34.
donors to accelerate Fe (Ⅲ)/Fe (Ⅱ) cycle in Fenton or Fenton-like [31] SUN S F, LIU Y L, MA J, et al. Transformation of substituted
processes[J]. Chemical Engineering Journal, 2022, 454: 140096. anilines by ferrate (Ⅵ): Kinetics, pathways, and effect of dissolved
[13] FENTON H J H. Oxidation of tartaric acid in presence of iron[J]. organic matter[J]. Chemical Engineering Journal, 2018, 332: 245-
Journal of the Chemical Society, Transactions, 1894, 65: 899-910. 252.
[14] GAO P, SONG Y, HAO M J, et al. An effective and magnetic [32] CZAPLICKA M, BRATEK Ł, JAWOREK K, et al. Photo-oxidation
Fe 2O 3-ZrO 2 catalyst for phenol degradation under neutral pH in the of p-arsanilic acid in acidic solutions: Kinetics and the identification