Page 175 - 《精细化工》2023年第2期
P. 175

第 2 期               李   浪,等:  具有 PDA-UiO-66 中间层耐溶剂复合纳滤膜的制备及性能                            ·397·


                 al. Preparation and properties of polyether imide solvent-resistant   performance of organic solvent nanofiltration (OSN) membrane[J].
                 ultrafiltration membrane[J]. Journal of Materials Engineering (材料  Journal of Membrane Science, 2020, 614: 118433.
                 工程), 2022, 50(8): 160-168.                    [27]  LI H K (李海柯), LI X D (李新冬), OUYANG G Z (欧阳果仔), et
            [20]  XIAO F, HU X, CHEN Y,  et al. Porous Zr-based metal-organic   al. Preparation and properties of HKUST-1 doped polyetherimide
                 frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane   mixed matrix membrane[J]. Fine Chemicals (精细化工), 2022, 39(5):
                 toward enhanced desalination performance[J]. ACS Applied Materials   1012-1019.
                 & Interfaces, 2019, 11(50): 47390-47403.      [28]  AHMADIANNAMINI P, LI X, GOYENS W,  et al. Multilayered
            [21]  TAN L, LI Y, LV Q, et al. Development of soluble UiO-66 to improve   polyelectrolyte complex based solvent resistant nanofiltration membranes
                 photocatalytic CO 2 reduction[J/OL]. Catalysis Today, 2022.https://doi.org/   prepared from weak polyacids[J]. Journal of Membrane Science,
                 10.1016/j.cattod.2022.05.001.                     2012, 394/395: 98-106.
            [22]  FU C X (付长欣), BIAN C Y (边承英), JIANG Q (江乾),  et al.   [29]  SORRIBAS S, GORGOJO P, TELLEZ C, et al. High flux thin film
                 Preparation of solvent-resistant polyetherimide composite nanofiltration   nanocomposite  membranes based on  metal-organic frameworks for
                 membranes[J]. Chemical Engineering (化学工程), 2015, 43(9): 63-67.   organic solvent nanofiltration[J]. Journal of the American Chemical
            [23]  MINHAS F T, MEMON S, BHANGER M I, et al. Solvent resistant   Society, 2013, 135(40): 15201-15208.
                 thin film composite nanofiltration membrane: Characterization and   [30]  ECHAIDE-GÓRRIZ C, SORRIBAS  S, TÉLLEZ C,  et al. MOF
                 permeation study[J]. Applied Surface Science, 2013, 282: 887-897.   nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film
            [24]  CHEN L, REN X, LI Y, et al. Enhancing interface compatibility of   nanocomposite organic solvent nanofiltration membranes[J]. RSC
                 UiO-66-NH 2 and polyamide by incorporating  dopamine into thin   Advances, 2016, 6(93): 90417-90426.
                 film nanocomposite  membranes[J]. Journal of Membrane Science,   [31]  DAI J, LI S, LIU J,  et al.  Fabrication and characterization  of a
                 2022, 654: 120565.                                defect-free mixed  matrix membrane  by facile  mixing  PPSU with
            [25] ZHANG  Z  (张哲), WANG L (王磊), HE M L (贺苗露),  et al.   ZIF-8 core-shell microspheres for solvent-resistant nanofiltration[J].
                 Preparation and performance of UiO-66 modified thin-film nanocomposite   Journal of Membrane Science, 2019, 589: 117261.
                 membrane for forward osmosis[J]. China Environmental Science (中  [32]  SARANGO L, PASETA  L,  NAVARRO M,  et al. Controlled
                 国环境科学), 2020, 40(6): 2418-2425.                   deposition  of MOFs by dip-coating in thin film nanocomposite
            [26]  YANG S, LI H,  ZHANG X,  et al. Amine-functionalized ZIF-8   membranes for organic solvent nanofiltration[J]. Journal of Industrial
                 nanoparticles as interlayer for the improvement of the  separation   and Engineering Chemistry, 2018, 59: 8-16.




            (上接第 315 页)                                            Beijing University of Civil Engineering and Architecture (北京建筑
                                                                   大学), 2019.
            [49]  WU Y, WANG H, SUN Y M, et al. Photogenerated charge transfer   [53]  LIU B, FAN Z  L,  ZHAI W J,  et al. Photoreduction  properties of
                                                                                           4+
                                                                                             3+
                 via interfacial internal electric field for  significantly improved   novel  Z-scheme structured Sr 0.8La 0.2(Ti 1 −δ Ti δ )O 3/Bi 2MoO 6 composites
                 photocatalysis in direct  Z-scheme oxygen-doped carbon nitrogen/   for the removal of Cr(Ⅵ)[J]. RSC Advances, 2021, 11: 14007-14016.
                 CoAl-layered double hydroxide heterojunction[J]. Applied Catalysis   [54]  WEN X J, NIU  C G , ZHANG  L,  et al. Fabrication of  SnO 2
                 B: Environmental, 2018, 227: 530-540.             nanopaticles/BiOI  n-p heterostructure for wider spectrum visible-
            [50]  YU  Y G, LU Z H, WEI H, et al. Electrostatic self-assembly aided   light photocatalytic degradation  of antibiotic oxytetracycline
                 synthesis of CdS/Cs 3PW 12O 40 hybrids for photocatalytic reduction of   hydrochloride[J]. ACS Sustainable Chemistry & Engineering, 2017,
                 Cr(Ⅵ)[J]. Water, Air, & Soil Pollution, 2020, 231: 345.   5(6): 5134-5147.
            [51]  ISLAM J B, FURUKAWA M,  TATEISHI I,  et al. Formic acid   [55]  HOU W D, DENG C M, XU H  M,  et al.  n-p BiOCl@g-C 3N 4
                                                                   heterostructure with rich-oxygen vacancies for photodegradation of
                 motivated photocatalytic reduction of Cr(Ⅵ) to Cr(Ⅲ) with ZnFe 2O 4
                 nanoparticles under UV irradiation[J]. Environmental Technology,   carbamazepine[J]. ChemistrySelect, 2020, 5(9): 2767-2777.
                 2020, 42(17): 2740-2748.                      [56]  WU S M, LIU X L, LIAN X L, et al. Homojunction of oxygen and
            [52]  YI X H(衣晓虹). Photocatalytic reduction of Cr(Ⅵ) and degradation   titanium vacancies and its interfacial  n-p effect[J].  Advanced
                 of organic pollutants by MOFs  and its compounds[D].  Beijing:  Materials, 2018, 30(32): 1802173.




            (上接第 387 页)                                            198:295-302.
                                                               [53]  FURMAN O S, TEEL A L,  WATTS R J. Mechanism of base
            [50]  JIANG X, GUO  Y, ZHANG L,  et al. Catalytic degradation of   activation  of  persulfate[J]. Environmental Science & Technology,
                 tetracycline hydrochloride by persulfate activated with nano Fe   0  2010, 44(16): 6423-6428.
                 immobilized mesoporous carbon[J]. Chemical Engineering Journal,   [54]  PAPATHEODOROU G , NTZOUFRA P, HAPESHI E, et al. Hybrid
                 2018, 341: 392-401.                               biochar/ceria nanomaterials: Synthesis, characterization and activity
            [51]  ANIPSITAKIS G P, DIONYSIOU D  D. Radical generation  by the   assessment for the persulfate-induced degradation of antibiotic
                 Interaction of transition metals with common oxidants[J]. Environmental   sulfamethoxazole[J]. Nanomaterials, 2022, 12(2): 1941-1958.
                 Science & Technology, 2004, 38(13): 3705.     [55]  TALA W,  CHANTARA S. Use of spent coffee ground  biochar as
            [52]  WANG Y, AO Z, SUN H, et al. Activation of peroxymonosulfate by   ambient PAHs sorbent and novel extraction method for GC-MS
                 carbonaceous oxygen groups: Experimental and density functional   analysis[J]. Environmental Science and Pollution Research, 2019, 26:
                 theory calculations[J]. Applied Catalysis B Environmental, 2016,   13025-13040.
   170   171   172   173   174   175   176   177   178   179   180