Page 175 - 《精细化工》2023年第2期
P. 175
第 2 期 李 浪,等: 具有 PDA-UiO-66 中间层耐溶剂复合纳滤膜的制备及性能 ·397·
al. Preparation and properties of polyether imide solvent-resistant performance of organic solvent nanofiltration (OSN) membrane[J].
ultrafiltration membrane[J]. Journal of Materials Engineering (材料 Journal of Membrane Science, 2020, 614: 118433.
工程), 2022, 50(8): 160-168. [27] LI H K (李海柯), LI X D (李新冬), OUYANG G Z (欧阳果仔), et
[20] XIAO F, HU X, CHEN Y, et al. Porous Zr-based metal-organic al. Preparation and properties of HKUST-1 doped polyetherimide
frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane mixed matrix membrane[J]. Fine Chemicals (精细化工), 2022, 39(5):
toward enhanced desalination performance[J]. ACS Applied Materials 1012-1019.
& Interfaces, 2019, 11(50): 47390-47403. [28] AHMADIANNAMINI P, LI X, GOYENS W, et al. Multilayered
[21] TAN L, LI Y, LV Q, et al. Development of soluble UiO-66 to improve polyelectrolyte complex based solvent resistant nanofiltration membranes
photocatalytic CO 2 reduction[J/OL]. Catalysis Today, 2022.https://doi.org/ prepared from weak polyacids[J]. Journal of Membrane Science,
10.1016/j.cattod.2022.05.001. 2012, 394/395: 98-106.
[22] FU C X (付长欣), BIAN C Y (边承英), JIANG Q (江乾), et al. [29] SORRIBAS S, GORGOJO P, TELLEZ C, et al. High flux thin film
Preparation of solvent-resistant polyetherimide composite nanofiltration nanocomposite membranes based on metal-organic frameworks for
membranes[J]. Chemical Engineering (化学工程), 2015, 43(9): 63-67. organic solvent nanofiltration[J]. Journal of the American Chemical
[23] MINHAS F T, MEMON S, BHANGER M I, et al. Solvent resistant Society, 2013, 135(40): 15201-15208.
thin film composite nanofiltration membrane: Characterization and [30] ECHAIDE-GÓRRIZ C, SORRIBAS S, TÉLLEZ C, et al. MOF
permeation study[J]. Applied Surface Science, 2013, 282: 887-897. nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film
[24] CHEN L, REN X, LI Y, et al. Enhancing interface compatibility of nanocomposite organic solvent nanofiltration membranes[J]. RSC
UiO-66-NH 2 and polyamide by incorporating dopamine into thin Advances, 2016, 6(93): 90417-90426.
film nanocomposite membranes[J]. Journal of Membrane Science, [31] DAI J, LI S, LIU J, et al. Fabrication and characterization of a
2022, 654: 120565. defect-free mixed matrix membrane by facile mixing PPSU with
[25] ZHANG Z (张哲), WANG L (王磊), HE M L (贺苗露), et al. ZIF-8 core-shell microspheres for solvent-resistant nanofiltration[J].
Preparation and performance of UiO-66 modified thin-film nanocomposite Journal of Membrane Science, 2019, 589: 117261.
membrane for forward osmosis[J]. China Environmental Science (中 [32] SARANGO L, PASETA L, NAVARRO M, et al. Controlled
国环境科学), 2020, 40(6): 2418-2425. deposition of MOFs by dip-coating in thin film nanocomposite
[26] YANG S, LI H, ZHANG X, et al. Amine-functionalized ZIF-8 membranes for organic solvent nanofiltration[J]. Journal of Industrial
nanoparticles as interlayer for the improvement of the separation and Engineering Chemistry, 2018, 59: 8-16.
(上接第 315 页) Beijing University of Civil Engineering and Architecture (北京建筑
大学), 2019.
[49] WU Y, WANG H, SUN Y M, et al. Photogenerated charge transfer [53] LIU B, FAN Z L, ZHAI W J, et al. Photoreduction properties of
4+
3+
via interfacial internal electric field for significantly improved novel Z-scheme structured Sr 0.8La 0.2(Ti 1 −δ Ti δ )O 3/Bi 2MoO 6 composites
photocatalysis in direct Z-scheme oxygen-doped carbon nitrogen/ for the removal of Cr(Ⅵ)[J]. RSC Advances, 2021, 11: 14007-14016.
CoAl-layered double hydroxide heterojunction[J]. Applied Catalysis [54] WEN X J, NIU C G , ZHANG L, et al. Fabrication of SnO 2
B: Environmental, 2018, 227: 530-540. nanopaticles/BiOI n-p heterostructure for wider spectrum visible-
[50] YU Y G, LU Z H, WEI H, et al. Electrostatic self-assembly aided light photocatalytic degradation of antibiotic oxytetracycline
synthesis of CdS/Cs 3PW 12O 40 hybrids for photocatalytic reduction of hydrochloride[J]. ACS Sustainable Chemistry & Engineering, 2017,
Cr(Ⅵ)[J]. Water, Air, & Soil Pollution, 2020, 231: 345. 5(6): 5134-5147.
[51] ISLAM J B, FURUKAWA M, TATEISHI I, et al. Formic acid [55] HOU W D, DENG C M, XU H M, et al. n-p BiOCl@g-C 3N 4
heterostructure with rich-oxygen vacancies for photodegradation of
motivated photocatalytic reduction of Cr(Ⅵ) to Cr(Ⅲ) with ZnFe 2O 4
nanoparticles under UV irradiation[J]. Environmental Technology, carbamazepine[J]. ChemistrySelect, 2020, 5(9): 2767-2777.
2020, 42(17): 2740-2748. [56] WU S M, LIU X L, LIAN X L, et al. Homojunction of oxygen and
[52] YI X H(衣晓虹). Photocatalytic reduction of Cr(Ⅵ) and degradation titanium vacancies and its interfacial n-p effect[J]. Advanced
of organic pollutants by MOFs and its compounds[D]. Beijing: Materials, 2018, 30(32): 1802173.
(上接第 387 页) 198:295-302.
[53] FURMAN O S, TEEL A L, WATTS R J. Mechanism of base
[50] JIANG X, GUO Y, ZHANG L, et al. Catalytic degradation of activation of persulfate[J]. Environmental Science & Technology,
tetracycline hydrochloride by persulfate activated with nano Fe 0 2010, 44(16): 6423-6428.
immobilized mesoporous carbon[J]. Chemical Engineering Journal, [54] PAPATHEODOROU G , NTZOUFRA P, HAPESHI E, et al. Hybrid
2018, 341: 392-401. biochar/ceria nanomaterials: Synthesis, characterization and activity
[51] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the assessment for the persulfate-induced degradation of antibiotic
Interaction of transition metals with common oxidants[J]. Environmental sulfamethoxazole[J]. Nanomaterials, 2022, 12(2): 1941-1958.
Science & Technology, 2004, 38(13): 3705. [55] TALA W, CHANTARA S. Use of spent coffee ground biochar as
[52] WANG Y, AO Z, SUN H, et al. Activation of peroxymonosulfate by ambient PAHs sorbent and novel extraction method for GC-MS
carbonaceous oxygen groups: Experimental and density functional analysis[J]. Environmental Science and Pollution Research, 2019, 26:
theory calculations[J]. Applied Catalysis B Environmental, 2016, 13025-13040.