Page 33 - 《精细化工》2023年第2期
P. 33

第 2 期                    郭海礁,等: MOFs 材料在 CO 2 加氢制甲醇催化剂中的应用                               ·255·


                 future directions[J]. Progress in Energy and Combustion Science,   & Engineering Chemistry Research, 1999, (38): 3868-3872.
                 2021, 85: 100905.                             [35]  VU T T N, DESGAGNÉS A, ILIUTA M C. Efficient approaches to
            [15]  FISHER I A, WOO H C, BLL A T. Effects of zirconia promotion on   overcome challenges in material development for conventional and
                 the activity of Cu/SiO 2 for methanol synthesis from CO/H 2 and   intensified CO 2 catalytic hydrogenation  to CO, methanol, and
                 CO 2/H 2[J]. Catalysis Letters, 1997, 44(1): 11-17.   DME[J]. Applied Catalysis A: General, 2021, 617: 118119.
            [16]  ARENA F, ITALIANO G, BARBERA K, et al. Solid-state interactions,   [36]  ZHANG W Z (张维中), WEN Y L (温月丽), SONG R P (宋镕鹏),
                 adsorption sites and functionality of Cu-ZnO/ZrO 2 catalysts in the   et al. Research progress of metal-organic framework  materials in
                 CO 2 hydrogenation to CH 3OH[J]. Applied Catalysis A: General,   catalytic reaction of carbon dioxide hydrogenation[J]. Natural Gas
                 2008, 350(1): 16-23.                              Chemical Industry: C1 Chemistry and Chemical Industry (天然气化
            [17]  WANG Y (王彦), WANG X Y (王晓月), CAO R W (曹瑞文), et al.   工: C1 化学与化工), 2020, 45(1): 113-119.
                 Research progress of  reaction mechanism of carbon dioxide   [37]  KOO W T, CHOI S J, KIM S J, et al. Heterogeneous sensitization of
                 hydrogenation to methanol[J]. Journal of Liaoning Petrochemical   metal-organic framework driven  metal@metal oxide complex
                 University (辽宁石油化工大学学报), 2020, 40(4): 11-20.      catalysts on oxide nanofiber scaffold toward superior gas sensors[J].
            [18]  KATTEL S, RAMÍREZ P, CHEN J G,  et al. Active sites for CO 2   Journal of the American Chemical Society, 2016, 138(40): 13431-
                 hydrogenation to  methanol on Cu/ZnO catalysts[J]. Science, 2017,   13437.
                 355(6331): 1296-1299.                         [38]  JIANG H L, BO L, LAN Y Q, et al. From metal-organic framework
            [19]  ZONG J  W, YANG X F,  WU Z L,  et al. State of the  art and   to nanoporous carbon: Toward a very high surface area and hydrogen
                 perspectives in heterogeneous catalysis of CO 2 hydrogenation to   uptake[J]. Journal of the American Chemical Society, 2011, 133(31):
                 methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.   11854-11857.
            [20]  DROJKOVA N, SANGORRIN  V S, ORINAK A,  et al. Recent   [39]  NOH H, KUNG C W, ISLAMOGLU T,  et al. Room temperature
                 developments in  heterogeneous catalysts modelling  for CO 2   synthesis of an 8-connected Zr-based metal-organic framework for
                 conversion to chemicals[J]. ChemCatChem, 2019, 12(7): 1802-1825.   top-down nanoparticle encapsulation[J]. Chemistry of Materials A
            [21]  YANG Y X, EVANS J, RODRIGUEZ J A, et al. Fundamental studies   Publication of the American Chemistry Society, 2018, 30(7): 2193-
                 of methanol synthesis from CO 2 hydrogenation on Cu(111), Cu   2197.
                 clusters, and Cu/ZnO(0001)[J]. Physical Chemistry Chemical   [40]  RUNGTAWEEVORANIT B, BAEK J, ARAUJO J R, et al. Copper
                 Physics, 2010, 12(33): 9909-9917.                 nanocrystals encapsulated in Zr-based metal-organic frameworks for
            [22]  RMIER K,  LIAO W  C, TADA S,  et al. CO 2-to-methanol   highly selective CO 2 hydrogenation to methanol[J]. Nano Letters,
                 hydrogenation on zirconia-supported copper nanoparticles: Reaction   2016, 16(12): 7645-7649.
                 intermediates and the role of the  metal-support interface[J].   [41]  BING A, ZHANG J, KANG C,  et al. Confinement of ultrasmall
                 Angewandte Chemie, 2017, 56(9): 2358-2363.        Cu/ZnO x nanoparticles in metal-organic frameworks for selective
            [23]  JIANG X, NIE X W, GUO X W, et al. Recent advances in carbon   methanol synthesis from catalytic hydrogenation of CO 2[J]. Journal
                 dioxide hydrogenation to methanol  via heterogeneous catalysis[J].   of the American Chemical Society, 2017, 139(10): 3834-3840.
                 Chemical Reviews, 2020, 120(15): 7984-8034.     [42]  KOBAYASHI H, TAYLOR J M, MITSUKA Y, et al. Charge transfer
            [24]  KATTEL S,  YAN B H, YANG Y  X,  et al. Optimizing  binding   dependence on CO 2 hydrogenation  activity to methanol in Cu
                 energies of key intermediates for CO 2 hydrogenation to  methanol   nanoparticles covered with metal-organic framework  systems[J].
                 over oxide-supported copper[J]. Journal of the American  Chemical   Chemical Science, 2019, 10(11): 3289-3294.
                 Society, 2016, 138(38): 12440-12450.          [43]  CHEN Y Z, LI H L, ZHAO W H, et al. Optimizing reaction paths for
            [25]  GRACIANI J, MUDIYANSELAGE  K, XU F,  et al. Highly  active   methanol synthesis from CO 2 hydrogenation  via metal-ligand
                 copper-ceria and copper-ceria-titania catalysts for methanol synthesis   cooperativity[J]. Nature Communications, 2019, 10(1): 1-8.
                 from CO 2[J]. Science, 2014, 345(6196): 546-550.   [44]  ZHANG C, LIAO P Y, WANG  H,  et al. Preparation of novel
            [26]  CLARKE D B, BELL A T. An infrared study of methanol synthesis   bimetallic  CuZn-BTC  coordination polymer nanorod for methanol
                 from CO 2 on clean and potassium-promoted Cu/SiO 2[J]. Journal of   synthesis from CO 2 hydrogenation[J]. Materials Chemistry  and
                 Catalysis, 1995, 154(2): 314-328.                 Physics, 2018, 215: 211-220.
            [27]  DIN I U, SHAHARUN M S, SUBBARAO D,  et al. Synthesis,   [45]  LIU  T K,  HONG  X L, LIU G  L,  et al.  In situ generation of the
                 characterization and activity pattern of carbon nanofibers based   Cu@3D-ZrO x framework catalyst for  selective  methanol synthesis
                 copper/zirconia catalysts for carbon dioxide hydrogenation to   from CO 2/H 2[J]. ACS Catalysis, 2020, 10(1): 93-102.
                 methanol: Influence of calcination temperature[J]. Journal of Power   [46]  WANG Y Q (王艳秋), ZHONG Z X (钟子欣), LIU T K (刘唐康), et
                                                                                    +
                 Sources, 2015, 274: 619-628.                      al. Cu@UiO-66 derived Cu -ZrO 2 interfacial sites for efficient CO 2
            [28]  DASIREDDY V D B C, LIKOZAR B. The role of copper oxidation   hydrogenation to methanol[J]. Acta Physico-Chimica Sinica (物理化
                 state in Cu/ZnO/Al 2O 3 catalysts in CO 2 hydrogenation and methanol   学学报) , 2020, 37(5): 2007089- 2007099.
                 productivity[J]. Renewable Energy, 2019, 140: 452-460.   [47]  LI X L, LIU G L, XU D, et al. Confinement of subnanometric PdZn
            [29]  KHOBRAGADE R, ROSKARIC M, ŽERJAV G, et al. Exploring the   at a defect enriched ZnO/ZIF-8 interface for efficient and selective
                 effect of morphology and surface properties of nanoshaped Pd/CeO 2   CO 2 hydrogenation to  methanol[J]. Journal of Materials Chemistry
                 catalysts on CO 2 hydrogenation to methanol[J]. Applied Catalysis A:   A, 2019, 7: 23878-23885.
                 General, 2021, 627: 118394-118410.            [48]  YIN Y Z, HU B, LI X L, et al. Pd@zeolitic imidazolate framework-8
            [30]  FREI M S, CAPDEVILA C M, GARCIA M R, et al. Mechanism and   derived PdZn alloy catalysts for efficient hydrogenation of CO 2 to
                 microkinetics of  methanol synthesis  via  CO 2 hydrogenation on   methanol[J]. Applied Catalysis B:  Environmental, 2018, 234:
                 indium oxide[J]. Journal of Catalysis, 2018, 361: 313-321.   143-152.
            [31]  YANG Y, MIMS  C A, MEI D H,  et al. Mechanistic studies of   [49]  HU B,  YIN Y Z,  ZHONG  Z X,  et al. Cu@ZIF-8  derived inverse
                 methanol synthesis over Cu from CO/CO 2/H 2/H 2O mixtures: The   ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO 2 hydrogenation
                 source of C in methanol and the role of water[J]. Journal of Catalysis,   to methanol[J]. Catalysis Science & Technology, 2019, 9(10): 2673-
                 2013, 298(1): 10-17.                              2681.
            [32]  JADHAV S G, VAIDYA P D, BHANAGE B M,  et al. Catalytic   [50]  LI W, WANG K C, WANG, HUANG J J, et al. M xO y-ZrO 2(M=Zn,
                 carbon  dioxide hydrogenation to  methanol:  A review of recent   Co, Cu) solid solutions derived from Schiff base-bridged UiO-66
                 studies[J]. Chemical Engineering Research and Design, 2014, 92(11):   composites as high-performance catalysts for CO 2 hydrogenation[J].
                 2557-2567.                                        ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272.
            [33]  WATANABE T T. The stability of Cu/ZnO-based catalysts in   [51]  STAWOWY M, CIESIELSKI  R, MANIECKI T,  et al. CO 2
                 methanol synthesis from a CO 2-rich feed and from a CO-rich feed[J].   hydrogenation to methanol over Ce and Zr containing UiO-66 and
                 Applied Catalysis A: General, 2001, 25: 235-240.   Cu/UiO-66[J]. Catalysts, 2019, 10(1): 39-55.
            [34]  SUN J  T, METCALFE I S, SAHIBZADA M.  Deactivation of
                 Cu/ZnO/Al 2O 3 methanol synthesis catalyst by sintering[J]. Industrial       (下转第 271 页)
   28   29   30   31   32   33   34   35   36   37   38