Page 33 - 《精细化工》2023年第2期
P. 33
第 2 期 郭海礁,等: MOFs 材料在 CO 2 加氢制甲醇催化剂中的应用 ·255·
future directions[J]. Progress in Energy and Combustion Science, & Engineering Chemistry Research, 1999, (38): 3868-3872.
2021, 85: 100905. [35] VU T T N, DESGAGNÉS A, ILIUTA M C. Efficient approaches to
[15] FISHER I A, WOO H C, BLL A T. Effects of zirconia promotion on overcome challenges in material development for conventional and
the activity of Cu/SiO 2 for methanol synthesis from CO/H 2 and intensified CO 2 catalytic hydrogenation to CO, methanol, and
CO 2/H 2[J]. Catalysis Letters, 1997, 44(1): 11-17. DME[J]. Applied Catalysis A: General, 2021, 617: 118119.
[16] ARENA F, ITALIANO G, BARBERA K, et al. Solid-state interactions, [36] ZHANG W Z (张维中), WEN Y L (温月丽), SONG R P (宋镕鹏),
adsorption sites and functionality of Cu-ZnO/ZrO 2 catalysts in the et al. Research progress of metal-organic framework materials in
CO 2 hydrogenation to CH 3OH[J]. Applied Catalysis A: General, catalytic reaction of carbon dioxide hydrogenation[J]. Natural Gas
2008, 350(1): 16-23. Chemical Industry: C1 Chemistry and Chemical Industry (天然气化
[17] WANG Y (王彦), WANG X Y (王晓月), CAO R W (曹瑞文), et al. 工: C1 化学与化工), 2020, 45(1): 113-119.
Research progress of reaction mechanism of carbon dioxide [37] KOO W T, CHOI S J, KIM S J, et al. Heterogeneous sensitization of
hydrogenation to methanol[J]. Journal of Liaoning Petrochemical metal-organic framework driven metal@metal oxide complex
University (辽宁石油化工大学学报), 2020, 40(4): 11-20. catalysts on oxide nanofiber scaffold toward superior gas sensors[J].
[18] KATTEL S, RAMÍREZ P, CHEN J G, et al. Active sites for CO 2 Journal of the American Chemical Society, 2016, 138(40): 13431-
hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 13437.
355(6331): 1296-1299. [38] JIANG H L, BO L, LAN Y Q, et al. From metal-organic framework
[19] ZONG J W, YANG X F, WU Z L, et al. State of the art and to nanoporous carbon: Toward a very high surface area and hydrogen
perspectives in heterogeneous catalysis of CO 2 hydrogenation to uptake[J]. Journal of the American Chemical Society, 2011, 133(31):
methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413. 11854-11857.
[20] DROJKOVA N, SANGORRIN V S, ORINAK A, et al. Recent [39] NOH H, KUNG C W, ISLAMOGLU T, et al. Room temperature
developments in heterogeneous catalysts modelling for CO 2 synthesis of an 8-connected Zr-based metal-organic framework for
conversion to chemicals[J]. ChemCatChem, 2019, 12(7): 1802-1825. top-down nanoparticle encapsulation[J]. Chemistry of Materials A
[21] YANG Y X, EVANS J, RODRIGUEZ J A, et al. Fundamental studies Publication of the American Chemistry Society, 2018, 30(7): 2193-
of methanol synthesis from CO 2 hydrogenation on Cu(111), Cu 2197.
clusters, and Cu/ZnO(0001)[J]. Physical Chemistry Chemical [40] RUNGTAWEEVORANIT B, BAEK J, ARAUJO J R, et al. Copper
Physics, 2010, 12(33): 9909-9917. nanocrystals encapsulated in Zr-based metal-organic frameworks for
[22] RMIER K, LIAO W C, TADA S, et al. CO 2-to-methanol highly selective CO 2 hydrogenation to methanol[J]. Nano Letters,
hydrogenation on zirconia-supported copper nanoparticles: Reaction 2016, 16(12): 7645-7649.
intermediates and the role of the metal-support interface[J]. [41] BING A, ZHANG J, KANG C, et al. Confinement of ultrasmall
Angewandte Chemie, 2017, 56(9): 2358-2363. Cu/ZnO x nanoparticles in metal-organic frameworks for selective
[23] JIANG X, NIE X W, GUO X W, et al. Recent advances in carbon methanol synthesis from catalytic hydrogenation of CO 2[J]. Journal
dioxide hydrogenation to methanol via heterogeneous catalysis[J]. of the American Chemical Society, 2017, 139(10): 3834-3840.
Chemical Reviews, 2020, 120(15): 7984-8034. [42] KOBAYASHI H, TAYLOR J M, MITSUKA Y, et al. Charge transfer
[24] KATTEL S, YAN B H, YANG Y X, et al. Optimizing binding dependence on CO 2 hydrogenation activity to methanol in Cu
energies of key intermediates for CO 2 hydrogenation to methanol nanoparticles covered with metal-organic framework systems[J].
over oxide-supported copper[J]. Journal of the American Chemical Chemical Science, 2019, 10(11): 3289-3294.
Society, 2016, 138(38): 12440-12450. [43] CHEN Y Z, LI H L, ZHAO W H, et al. Optimizing reaction paths for
[25] GRACIANI J, MUDIYANSELAGE K, XU F, et al. Highly active methanol synthesis from CO 2 hydrogenation via metal-ligand
copper-ceria and copper-ceria-titania catalysts for methanol synthesis cooperativity[J]. Nature Communications, 2019, 10(1): 1-8.
from CO 2[J]. Science, 2014, 345(6196): 546-550. [44] ZHANG C, LIAO P Y, WANG H, et al. Preparation of novel
[26] CLARKE D B, BELL A T. An infrared study of methanol synthesis bimetallic CuZn-BTC coordination polymer nanorod for methanol
from CO 2 on clean and potassium-promoted Cu/SiO 2[J]. Journal of synthesis from CO 2 hydrogenation[J]. Materials Chemistry and
Catalysis, 1995, 154(2): 314-328. Physics, 2018, 215: 211-220.
[27] DIN I U, SHAHARUN M S, SUBBARAO D, et al. Synthesis, [45] LIU T K, HONG X L, LIU G L, et al. In situ generation of the
characterization and activity pattern of carbon nanofibers based Cu@3D-ZrO x framework catalyst for selective methanol synthesis
copper/zirconia catalysts for carbon dioxide hydrogenation to from CO 2/H 2[J]. ACS Catalysis, 2020, 10(1): 93-102.
methanol: Influence of calcination temperature[J]. Journal of Power [46] WANG Y Q (王艳秋), ZHONG Z X (钟子欣), LIU T K (刘唐康), et
+
Sources, 2015, 274: 619-628. al. Cu@UiO-66 derived Cu -ZrO 2 interfacial sites for efficient CO 2
[28] DASIREDDY V D B C, LIKOZAR B. The role of copper oxidation hydrogenation to methanol[J]. Acta Physico-Chimica Sinica (物理化
state in Cu/ZnO/Al 2O 3 catalysts in CO 2 hydrogenation and methanol 学学报) , 2020, 37(5): 2007089- 2007099.
productivity[J]. Renewable Energy, 2019, 140: 452-460. [47] LI X L, LIU G L, XU D, et al. Confinement of subnanometric PdZn
[29] KHOBRAGADE R, ROSKARIC M, ŽERJAV G, et al. Exploring the at a defect enriched ZnO/ZIF-8 interface for efficient and selective
effect of morphology and surface properties of nanoshaped Pd/CeO 2 CO 2 hydrogenation to methanol[J]. Journal of Materials Chemistry
catalysts on CO 2 hydrogenation to methanol[J]. Applied Catalysis A: A, 2019, 7: 23878-23885.
General, 2021, 627: 118394-118410. [48] YIN Y Z, HU B, LI X L, et al. Pd@zeolitic imidazolate framework-8
[30] FREI M S, CAPDEVILA C M, GARCIA M R, et al. Mechanism and derived PdZn alloy catalysts for efficient hydrogenation of CO 2 to
microkinetics of methanol synthesis via CO 2 hydrogenation on methanol[J]. Applied Catalysis B: Environmental, 2018, 234:
indium oxide[J]. Journal of Catalysis, 2018, 361: 313-321. 143-152.
[31] YANG Y, MIMS C A, MEI D H, et al. Mechanistic studies of [49] HU B, YIN Y Z, ZHONG Z X, et al. Cu@ZIF-8 derived inverse
methanol synthesis over Cu from CO/CO 2/H 2/H 2O mixtures: The ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO 2 hydrogenation
source of C in methanol and the role of water[J]. Journal of Catalysis, to methanol[J]. Catalysis Science & Technology, 2019, 9(10): 2673-
2013, 298(1): 10-17. 2681.
[32] JADHAV S G, VAIDYA P D, BHANAGE B M, et al. Catalytic [50] LI W, WANG K C, WANG, HUANG J J, et al. M xO y-ZrO 2(M=Zn,
carbon dioxide hydrogenation to methanol: A review of recent Co, Cu) solid solutions derived from Schiff base-bridged UiO-66
studies[J]. Chemical Engineering Research and Design, 2014, 92(11): composites as high-performance catalysts for CO 2 hydrogenation[J].
2557-2567. ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272.
[33] WATANABE T T. The stability of Cu/ZnO-based catalysts in [51] STAWOWY M, CIESIELSKI R, MANIECKI T, et al. CO 2
methanol synthesis from a CO 2-rich feed and from a CO-rich feed[J]. hydrogenation to methanol over Ce and Zr containing UiO-66 and
Applied Catalysis A: General, 2001, 25: 235-240. Cu/UiO-66[J]. Catalysts, 2019, 10(1): 39-55.
[34] SUN J T, METCALFE I S, SAHIBZADA M. Deactivation of
Cu/ZnO/Al 2O 3 methanol synthesis catalyst by sintering[J]. Industrial (下转第 271 页)