Page 57 - 《精细化工》2023年第2期
P. 57
第 2 期 姚 雪,等: 基于动态硼酸酯键/氢键的自修复导电水凝胶的制备及性能 ·279·
PAM/PBA-IL/CNF 水凝胶的离子电导率与初始基本 [5] CHEN J W, ZHU Y T, CHANG X H, et al. Recent progress in
essential functions of soft electronic skin[J]. Advanced Functional
相当,表明水凝胶自愈后的接触面之间可重新建立 Materials, 2021, 31(42): 2104686.
3D 导电网络。上述结果展现了该水凝胶在柔性电子 [6] JIANG S Q (蒋山泉), DENG X H (邓小红), HU C B (胡承波), et al.
Synthesis and evaluation of self-healing pH-sensitive hydrogel based
器件领域中的潜在应用前景。 on dynamic covalent bond[J]. Fine Chemicals (精细化工), 2021,
38(10): 2012-2018.
[7] ZHAO L, ZHAO J Z, ZHANG F, et al. Highly stretchable, adhesive,
and self-healing silk fibroin-dopted hydrogels for wearable
sensors[J]. Advanced Healthcare Materials, 2021, 10(10): 2002083.
[8] WU B Y (吴宝意), XU Y W (徐亚文), LE X X (乐晓霞), et al.
Smart hydrogel actuators assembled via dynamic boronic ester
bonds[J]. Acta Polymerica Sinica (高分子学报), 2019, 50(5):
496-504.
[9] QIN T, LIAO W C, YU L, et al. Recent progress in conductive
self-healing hydrogels for flexible sensors[J]. Journal of Polymer
Science, 2022, 60(18): 2607-2634.
[10] YAN J, LI M F, WANG Z W, et al. Highly tough, multi-
stimuli-responsive, and fast self-healing supramolecular networks
toward strain sensor application[J]. Chemical Engineering Journal,
图 9 不同 PBA-IL 含量的 PAM/PBA-IL/CNF 水凝胶的电 2020, 389: 123468.
[11] LIN F C, WANG Z, SHEN Y P, et al. Natural skin-inspired versatile
导率 cellulose biomimetic hydrogels[J]. Journal of Materials Chemistry A,
Fig. 9 Conductivity of PAM/PBA-IL/CNF hydrogels with 2019, 7(46): 26442-26455.
different PBA-IL contents [12] WEI Y, XIANG L J, OU H J, et al. Mxene-based conductive
organohydrogels with long-term environmental stability and
3 结论 multifunctionality[J]. Advanced Functional Materials, 2020, 30(48):
2005135.
[13] ZHAO J B (赵俭波), LUO N (罗楠), CAO H (曹辉). Preparation of
(1)设计了一种 PBA-IL 单体。其中,苯硼酸 PASP/PAA interpenetrate network hydrogel and its application in
基团与顺式二醇化合物形成硼酸酯动态共价键;咪 water retaining agent PASP/PAA[J]. Fine Chemicals (精细化工),
2020, 37(8): 1601-1607.
唑盐的结构增加了水凝胶的离子电导率,并与水凝 [14] HAN Z L, WANG P, LU Y C, et al. A versatile hydrogel
胶体系中的其他组分产生氢键相互作用。 network-repairing strategy achieved by the covalent-like hydrogen
bond interaction[J]. Science Advances, 2022, 8(2): 1-11.
(2)PAM/PBA-IL 共聚物与 CNF 链上顺式二醇 [15] LI F B, LI N, WANG S X, et al. Self-repairing and damage-tolerant
形成的硼酸酯键及水凝胶内部多重氢键协同提高了 hydrogels for efficient solar-powered water purification and
desalination[J]. Advanced Functional Materials, 2021, 31(40): 2104464.
PAM/PBA-IL/CNF 水凝胶的自修复性能。当 PBA-IL
[16] DENG X L, TANG J Q, GUAN W, et al. Strong dynamic interfacial
含量为 30%时,水凝胶的自修复性能最突出,HE adhesion by polymeric ionic liquids under extreme conditions[J].
ACS Nano, 2022, 16(4): 5303-5315.
为 95.43%(150 min)。
[17] YE Y H, ZHANG Y F, CHEN Y, et al. Cellulose nanofibrils
(3)基于半互穿网络、氢键和动态硼酸酯键的 enhanced, strong, stretchable, freezing-tolerant ionic conductive
策略,使水凝胶具有良好的力学性能。当 PBA-IL organohydrogel for multi-functional sensors[J]. Advanced Functional
Materials, 2020, 30(35): 2003430.
含量为 30%时,水凝胶的断裂应力为 335.1 kPa,断 [18] PENG W W, HAN L, HUANG H L, et al. A direction-aware and
2
裂伸长率为 1969.5%,断裂能为 12.1 kJ/m 。 ultrafast self-healing dual network hydrogel for a flexible electronic
skin strain sensor[J]. Journal of Materials Chemistry A, 2020, 8(48):
(4)水凝胶具有良好的导电性,当 PBA-IL 含 26109-26118.
量为 30%时,水凝胶的电导率为 6.38 mS/cm,且在 [19] KHIARI R, ROL F, BROCHIER M C, et al. Efficiency of cellulose
carbonates to produce cellulose nanofibers[J]. ACS Sustainable Chemistry
拉伸至 660%应变时仍保持稳定的导电网络,显现出 & Engineering, 2019, 7(9): 8155-8167.
在柔性电子器件领域中的潜在应用前景。 [20] DING L, CHEN L Y, HU L C, et al. Self-healing and acidochromic
polyvinyl alcohol hydrogel reinforced by regenerated cellulose[J].
参考文献: Carbohydrate Polymers, 2021, 255: 117331.
[21] WANG Z H, ZHANG J X, LIU J H, et al. 3D printable, highly
[1] MIAO Y, XU M D, ZHANG L D. Electrochemistry-induced stretchable, superior stable ionogels based on poly(ionic liquid) with
improvements of mechanical strength, self-healing, and interfacial hyperbranched polymers as macro-cross-linkers for high-performance
adhesion of hydrogels[J]. Advanced Materials, 2021, 33(40): 2102308. strain sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(4):
[2] WANG Z, ZHENG X J, OUCHI T, et al. Toughening hydrogels 5614-5624.
through force-triggered chemical reactions that lengthen polymer [22] ZHAO Z H, WANG D P, ZUO J L, et al. A tough and self-healing
strands[J]. Science, 2021, 374(6564): 193-196. polymer enabled by promoting bond exchange in boronic esters with
[3] WANG S H (王思恒), YANG X X (杨欣欣), HUANG X J (黄旭娟), neighboring hydroxyl groups[J]. ACS Materials Letters, 2021, 3(9):
et al. Preparation of anti-freezing hydrogels and its application in 1328-1338.
flexible electronics[J]. Fine Chemicals (精细化工), 2021, 38(6): [23] GAO J W, FAN Y B, ZHANG Q T, et al. Ultra-robust and extensible
1081-1091. fibrous mechanical sensors for wearable smart healthcare[J].
[4] LU J (路洁), LI M X (李明星), ZHOU Y Y (周奕杨), et al. Research Advanced Materials, 2022 34(20): 2107511.
advances in the preparation of nanocellulose and its applications in [24] LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid) hydrogel-
the field of hydrogels[J]. China Pulp & Paper (中国造纸), 2021, based anti-freezing ionic skin for a soft robotic gripper[J]. Materials
40(11): 107-117. Horizons, 2020, 7(3): 919-927.