Page 67 - 《精细化工》2023年第2期
P. 67
第 2 期 闫共芹,等: 钇掺杂钛酸锂/氧化石墨烯纳米复合材料的合成与电化学性能 ·289·
〔LTO 和 LTO(Y)〕相比,LTO(Y)@RGO 电荷传递 [16] SUN X, RADOVANOVIC P V, CUI B. Advances in spinel Li 4Ti 5O 12
阻抗降低了 54.26 和 67.55 Ω,增加了导电性,同时 anode materials for lithium-ion batteries[J]. New Journal of
Chemistry, 2015, 39(1): 38-63.
也降低了电极极化程度。 [17] DONG F, ZHANG G Q, GUO Y, et al. Flower-like hydrogen titanate
钛酸锂作为一种性能优异的锂离子电池负极材 nanosheets: Preparation characterization and their photocatalytic
hydrogen production performance in the presence of Pt cocatalyst[J].
料,对其结构和成分、形貌粒径以及电化学性能调 RSC Advances, 2020, 10(46): 27652-27661.
控将对其实际应用提供理论支持,本研究对推动钛 [18] RONG D X (荣冬霞), LUO X X (罗骁霄), WEN X G (文晓刚).
酸锂负极材料的大规模商用具有实际意义。 Hydrothermal synthesis and Li -ion battery performance of Li 4Ti 5O 12
nanosheets [J].Materials Protection (材料保护), 2014, 47: 128-130.
[19] XUE B ( 薛冰 ). Composite modification and electrochemical
参考文献:
performance evaluation of Li 4Ti 5O 12/C materials[D]. Dalian: Dalian
[1] HAN C P (韩翠平). Preparation and surface modification and University of Technology (大连理工大学), 2020.
desalination behavior of nano lithium titanate electrode materials[D]. [20] BAI X, LI W, WEI A J, et al. Preparation and electrochemical
2+
Beijing: Tsinghua University (清华大学), 2015. properties of Mg and F co-doped Li 4Ti 5O 12 anode material for use
[2] TANG Y F (唐宇峰). Study on a new nano-microclassified Li 4Ti 5O 12 in the lithium-ion batteries[J]. Electrochimica Acta, 2016, 222:
anode material for high-power lithium-ion batteries[D]. Shanghai: 1045-1055.
Shanghai Jiao Tong University (上海交通大学), 2010. [21] STENA I A, SHAYDULLIN R R, DESYATOV A V, et al. Effect of
[3] SUN A T, ZHONG H, ZHOU X Y, et al. Scalable synthesis of carbon and N-doped carbon nanomaterials on the electrochemical
carbon-encapsulated nano-Si on graphite anode material with high performance of lithium titanate-based composites[J]. Electrochimica
cyclic stability for lithium-ion batteries[J]. Applied Surface Science, Acta, 2020, 364: 137330.
2019, 470(15): 454-461. [22] ZHAO H L, LI Y, ZHU Z M, et al. Structural and electrochemical
[4] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. characteristics of Li 4–xA xTi 5O 12 as anode material for lithium-ion
Chemical Reviews, 2014, 114(23): 11503-11618. batteries[J]. Electrochimica Acta, 2008, 53(24): 7079-7083.
[5] LIU D R, WANG Y, XIE Y S, et al. On the stress characteristics of [23] WANG F M, SHI Z S, GONG F, et al. Morphologycontrol of anatase
graphite anode in commercial pouch lithium-ion battery[J]. Journal TiO 2 by surfactant-assisted hydrothermal method[J]. Chinese Journal
of Power Sources, 2013, 232: 29-33. of Chemical Engineering, 2007, 15(5): 754-759.
[6] RUAN D S, WU L, WANG F M, et al. A low-cost silicon-graphite [24] BAI Y J, CHEN G, NING L, et al. Yttrium-modified Li 4Ti 5O 12 as an
anode made from recycled graphite of spent lithium-ion batteries[J]. effective anode material for lithium-ion batteries with outstanding
Journal of Electroanalytical Chemistry, 2021, 884: 115073. long-term cyclability and rate capabilities[J]. Journal of Materials
[7] LUO W, CHEN X Q, XIA Y, et al. Surface and interface engineering Chemistry, 2013, 1(1):89-96.
of silicon-based anode materials for lithium-ion batteries[J]. [25] SHI J L, WANG H F, ZHU X L, et al. The nanostructure preservation
Advanced Energy Materials, 2017, 7(24): 1701083. of 3D porous graphene: New insights into the graphitization and
[8] XIN F X, WHITTINGHAM M S. Challenges and development of surface chemistry of non-stacked double-layer templated graphene
tin-based anode with high volumetric capacity for Li-ion batteries[J]. after high-temperature treatment[J]. Carbon, 2016, 103: 36-44.
Electrochemical Energy Reviews, 2020, 3(4): 643-655. [26] HUA L (华兰), YANG X Y (杨晓燕), KANG S L (康石林), et al.
[9] HAN X B, OUYANG M G, LU L G L, et al. Cycle life of Doped composite oxides Li 4Ti 5O 12 as negative electrode material for
commercial lithium-ion batteries with lithium titanium oxide anodes lithium-ion batteries[J]. Battery Bimonthly (电池), 2001, 31(5):
in electric vehicles[J]. Energies, 2014, 7(8): 4895-4909. 218-221.
[10] LOU X M, LI R J, ZHU X Z, et al. New anode material for [27] LIU Y X, ZHAO M Y, XU H, et al. Fabrication of continuous
lithium-ion batteries: Aluminum niobate[J]. ACS Applied Materials conductive network for Li 4Ti 5O 12 anode by Cu-doping and graphene
and Interfaces, 2019, 11(6): 6089-6096. wrapping to boost lithium storage[J]. Journal of Alloys and
[11] WANG J J, DONG S Y, ZHANG Y D, et al. Metal-organic Compounds, 2019, 780: 1-7.
framework derived titanium-based anode materials for lithium-ion [28] MAO S, HUANG X K, CHANG J B, et al. One-step, continuous
batteries[J]. Nano-Structures and Nano-Objects, 2018, 15: 48-53. synthesis of a spherical Li 4Ti 5O 12/graphene composite as an
[12] SANDHYA C P, JOHN B, GOURI C. Lithium titanate as anode ultra-long cycle life lithium-ion battery anode[J]. Universidad De Las
material for lithium-ion cells: A review[J]. Ionics, 2014, 20(5): 601- Palmas De Gran Canaria, 2015, 7(11): 224.
620. [29] WU Z Q (吴志芹), HAN E S (韩恩山), ZHU L Z (朱令之), et al.
[13] XIA H, LUO Z T, XIE J P. Nanostructured lithium titanate and Electrochemical performance of Al and Zn co-doped Li 4Ti 5O 12 as
lithium titanate/carbon nanocomposite as anode materials for advanced anode material [J].Chinese Journal of Power Sources (电源技术),
lithium-ion batteries[J]. Nanotechnology Reviews, 2014, 3(2): 161-175. 2014, 38(6): 1038-1040.
[14] LI Y N, GAO H, YANG W D. Enhancements of the structures and [30] LIU X T (刘相涛), ZHU L Z (朱令之), HAN E S (韩恩山), et al.
electrochemical performances of Li 4Ti 5O 12 electrodes by doping with Synthesis and electrochemical characteristics of LiNi 0.4Co 0.2Mn 0.4O 2
non-metallic elements[J]. Electrochimica Acta, 2022, 409: 139993. cathode material for Li-ion batteries[J]. Chinese Battery Industry (电
[15] YAN H, YAO W, FAN R Z, et al. Mesoporous hierarchical structure 池工业), 2012, 17(6): 344-349.
of Li 4Ti 5O 12/graphene with high electrochemical performance in [31] ZHANG Q Y (张千玉). Research on the modification of lithium
lithium-ion batteries[J]. ACS Sustainable Chemistry and Engineering, titanate and its recycling of green energy materials[D]. Shanghai:
2018, 6(9): 11360-11366. Fudan University (复旦大学), 2014.