Page 67 - 《精细化工》2023年第2期
P. 67

第 2 期              闫共芹,等:  钇掺杂钛酸锂/氧化石墨烯纳米复合材料的合成与电化学性能                                   ·289·


            〔LTO 和 LTO(Y)〕相比,LTO(Y)@RGO 电荷传递                   [16]  SUN X, RADOVANOVIC P V, CUI B. Advances in spinel Li 4Ti 5O 12
            阻抗降低了 54.26 和 67.55 Ω,增加了导电性,同时                        anode materials for lithium-ion batteries[J]. New Journal of
                                                                   Chemistry, 2015, 39(1): 38-63.
            也降低了电极极化程度。                                        [17]  DONG F, ZHANG G Q, GUO Y, et al. Flower-like hydrogen titanate
                 钛酸锂作为一种性能优异的锂离子电池负极材                              nanosheets: Preparation characterization and their photocatalytic
                                                                   hydrogen production performance in the presence of Pt cocatalyst[J].
            料,对其结构和成分、形貌粒径以及电化学性能调                                 RSC Advances, 2020, 10(46): 27652-27661.
            控将对其实际应用提供理论支持,本研究对推动钛                             [18]  RONG D  X (荣冬霞), LUO X X (罗骁霄), WEN X G  (文晓刚).
            酸锂负极材料的大规模商用具有实际意义。                                    Hydrothermal synthesis and Li -ion battery performance of Li 4Ti 5O 12
                                                                   nanosheets [J].Materials Protection (材料保护), 2014, 47: 128-130.
                                                               [19]  XUE B ( 薛冰 ). Composite modification and electrochemical
            参考文献:
                                                                   performance evaluation of Li 4Ti 5O 12/C materials[D]. Dalian: Dalian
            [1]   HAN  C P (韩翠平). Preparation and surface  modification and   University of Technology (大连理工大学), 2020.
                 desalination behavior of nano lithium titanate electrode materials[D].   [20]  BAI X, LI W, WEI A J,  et al. Preparation and electrochemical
                                                                             2+
                 Beijing: Tsinghua University (清华大学), 2015.        properties of Mg  and F co-doped Li 4Ti 5O 12 anode material for use
            [2]   TANG Y F (唐宇峰). Study on a new nano-microclassified Li 4Ti 5O 12   in the lithium-ion batteries[J]. Electrochimica Acta, 2016, 222:
                 anode material for high-power lithium-ion batteries[D]. Shanghai:   1045-1055.
                 Shanghai Jiao Tong University (上海交通大学), 2010.   [21]  STENA I A, SHAYDULLIN R R, DESYATOV A V, et al. Effect of
            [3]   SUN A  T,  ZHONG H, ZHOU X Y,  et al. Scalable synthesis of   carbon and N-doped carbon  nanomaterials on the electrochemical
                 carbon-encapsulated nano-Si on  graphite anode material with high   performance of lithium titanate-based composites[J]. Electrochimica
                 cyclic stability for lithium-ion batteries[J]. Applied Surface Science,   Acta, 2020, 364: 137330.
                 2019, 470(15): 454-461.                       [22]  ZHAO H L, LI Y, ZHU Z M, et al. Structural and electrochemical
            [4]   XU K. Electrolytes and interphases in Li-ion batteries and beyond[J].   characteristics of  Li 4–xA xTi 5O 12 as anode material for  lithium-ion
                 Chemical Reviews, 2014, 114(23): 11503-11618.     batteries[J]. Electrochimica Acta, 2008, 53(24): 7079-7083.
            [5]   LIU D R, WANG Y, XIE Y S, et al. On the stress characteristics of   [23]  WANG F M, SHI Z S, GONG F, et al. Morphologycontrol of anatase
                 graphite anode in commercial pouch lithium-ion battery[J]. Journal   TiO 2 by surfactant-assisted hydrothermal method[J]. Chinese Journal
                 of Power Sources, 2013, 232: 29-33.               of Chemical Engineering, 2007, 15(5): 754-759.
            [6]   RUAN D S, WU L, WANG F M, et al. A low-cost silicon-graphite   [24]  BAI Y J, CHEN G, NING L, et al. Yttrium-modified Li 4Ti 5O 12 as an
                 anode made from recycled graphite of spent lithium-ion batteries[J].   effective anode material for lithium-ion batteries with outstanding
                 Journal of Electroanalytical Chemistry, 2021, 884: 115073.   long-term cyclability  and rate  capabilities[J]. Journal of Materials
            [7]   LUO W, CHEN X Q, XIA Y, et al. Surface and interface engineering   Chemistry, 2013, 1(1):89-96.
                 of silicon-based  anode materials for lithium-ion batteries[J].   [25]  SHI J L, WANG H F, ZHU X L, et al. The nanostructure preservation
                 Advanced Energy Materials, 2017, 7(24): 1701083.   of 3D porous graphene: New insights into the graphitization and
            [8]   XIN F X, WHITTINGHAM M S. Challenges and development of   surface  chemistry  of non-stacked double-layer templated graphene
                 tin-based anode with high volumetric capacity for Li-ion batteries[J].   after high-temperature treatment[J]. Carbon, 2016, 103: 36-44.
                 Electrochemical Energy Reviews, 2020, 3(4): 643-655.   [26] HUA L (华兰), YANG X Y (杨晓燕), KANG S L (康石林), et al.
            [9]   HAN X  B, OUYANG M G, LU  L G L,  et al. Cycle life of   Doped composite oxides Li 4Ti 5O 12 as negative electrode material for
                 commercial lithium-ion batteries with lithium titanium oxide anodes   lithium-ion batteries[J]. Battery Bimonthly (电池), 2001, 31(5):
                 in electric vehicles[J]. Energies, 2014, 7(8): 4895-4909.   218-221.
            [10]  LOU X M,  LI R J, ZHU  X Z,  et al. New  anode material for   [27]  LIU  Y  X, ZHAO M  Y, XU  H,  et al. Fabrication of continuous
                 lithium-ion batteries: Aluminum niobate[J]. ACS Applied Materials   conductive network for Li 4Ti 5O 12 anode by Cu-doping and graphene
                 and Interfaces, 2019, 11(6): 6089-6096.           wrapping to  boost lithium storage[J]. Journal of Alloys and
            [11]  WANG J J, DONG S  Y,  ZHANG Y D,  et al. Metal-organic   Compounds, 2019, 780: 1-7.
                 framework derived titanium-based anode materials for lithium-ion   [28]  MAO S, HUANG  X K, CHANG J  B,  et al. One-step, continuous
                 batteries[J]. Nano-Structures and Nano-Objects, 2018, 15: 48-53.   synthesis of a spherical Li 4Ti 5O 12/graphene composite as  an
            [12]  SANDHYA  C P, JOHN B, GOURI  C. Lithium titanate as anode   ultra-long cycle life lithium-ion battery anode[J]. Universidad De Las
                 material for lithium-ion cells: A review[J]. Ionics, 2014, 20(5): 601-   Palmas De Gran Canaria, 2015, 7(11): 224.
                 620.                                          [29]  WU Z Q (吴志芹), HAN E S (韩恩山), ZHU L Z (朱令之), et al.
            [13]  XIA H,  LUO Z  T, XIE J P. Nanostructured lithium titanate and   Electrochemical performance of Al and Zn co-doped Li 4Ti 5O 12 as
                 lithium titanate/carbon nanocomposite as anode materials for advanced   anode material [J].Chinese Journal  of Power Sources (电源技术),
                 lithium-ion batteries[J]. Nanotechnology Reviews, 2014, 3(2): 161-175.   2014, 38(6): 1038-1040.
            [14]  LI Y N, GAO H, YANG W D. Enhancements of the structures and   [30]  LIU X T (刘相涛), ZHU L Z (朱令之), HAN E S (韩恩山), et al.
                 electrochemical performances of Li 4Ti 5O 12 electrodes by doping with   Synthesis and electrochemical characteristics of LiNi 0.4Co 0.2Mn 0.4O 2
                 non-metallic elements[J]. Electrochimica Acta, 2022, 409: 139993.   cathode material for Li-ion batteries[J]. Chinese Battery Industry (电
            [15]  YAN H, YAO W, FAN R Z, et al. Mesoporous hierarchical structure   池工业), 2012, 17(6): 344-349.
                 of Li 4Ti 5O 12/graphene with high electrochemical performance in   [31]  ZHANG Q  Y (张千玉). Research on the  modification of lithium
                 lithium-ion batteries[J]. ACS Sustainable Chemistry and Engineering,   titanate and its recycling of green energy materials[D].  Shanghai:
                 2018, 6(9): 11360-11366.                          Fudan University (复旦大学), 2014.
   62   63   64   65   66   67   68   69   70   71   72