Page 107 - 《精细化工》2023年第3期
P. 107
第 3 期 李亮荣,等: 基于 MOFs 材料光催化分解水制氢的研究进展 ·563·
[25] MESHRAM A A, MOSES K A, BARAL S S, et al. Hydrogen [43] XUE K H, HE R, YANG T L, et al. MOF-based In 2S 3-X 2S 3(X=Bi;
production from water splitting of real-time industry effluent using Sb)@TFPT-COFs hybrid materials for enhanced photocatalytic
novel photocatalyst[J]. Advanced Powder Technology, 2022, 33(3): performance under visible light[J]. Applied Surface Science, 2019,
103488. 493: 41-54.
[26] LIU Y, CHENG H, CHENG M, et al. The application of zeolitic [44] TRIPATHY S P, SUBUDHI S, DAS S, et al. Hydrolytically stable
imidazolate frameworks (ZIFs) and their derivatives based materials citrate capped Fe 3O 4@UiO-66-NH 2 MOF: A hetero-structure composite
for photocatalytic hydrogen evolution and pollutants treatment[J]. with enhanced activity towards Cr( ) adsorption and photocatalytic Ⅵ
Chemical Engineering Journal, 2021, 417: 127914. H 2 evolution[J]. Journal of Colloid and Interface Science, 2022,
[27] LAN M, GUO R M, DOU Y, et al. Fabrication of porous Pt-doping 606:353-366.
heterojunctions by using bimetallic MOF template for photocatalytic [45] EI-BERY H M, ABDELHAMID H N. Photocatalytic hydrogen
hydrogen generation[J]. Nano Energy, 2017, 33: 238-246. generation via water splitting using ZIF-67 derived Co 3O 4@C/TiO 2[J].
[28] WANG R, GU L N, ZHOU J J, et al. Quasi-polymeric metal-organic Journal of Environmental Chemical Engineering, 2021, 9(4): 105702.
framework UiO-66/g-C 3N 4 heterojunctions for enhanced photocatalytic [46] ZHANG M, SHANG Q G, WAN Y Q, et al. Self-template synthesis
hydrogen evolution under visible light irradiation[J]. Advanced of double-shell TiO 2@ZIF-8 hollow nanospheres via sonocrystallization
Materials Interfaces, 2015, 2(10): 1500037. with enhanced photocatalytic activities in hydrogen generation[J].
[29] QIU J H, YANG L, LI M, et al. Metal nanoparticles decorated Applied Catalysis B: Environmental, 2019, 241: 149-158.
MIL-125-NH 2 and MIL-125 for efficient photocatalysis[J]. Materials [47] LI F X, JIAO Y Q, LIU J N, et al. Promoting the spatial charge
Research Bulletin, 2019, 112: 297-306. separation by building porous ZrO 2@TiO 2 heterostructure toward
[30] YU Y (余岩). Heterostructure based on titanium-based semiconductor photocatalytic hydrogen evolution[J]. Journal of Colloid and
for hydrogen generation[D]. Hangzhou: Zhejiang University of Interface Science, 2020, 561: 568-575.
Technology (浙江工业大学), 2019. [48] SUN L M, YUAN Y S, WANG F, et al. Selective wet-chemical
[31] WANG C C, YI X H, WANG P. Powerful combination of MOFs and etching to create TiO 2@MOF frame heterostructure for efficient
C 3N 4 for enhanced photocatalytic performance[J]. Applied Catalysis photocatalytic hydrogen evolution[J]. Nano Energy, 2020, 74: 104909.
B: Environmental, 2019, 247: 24-48. [49] GUO F, GUO J H, WANG P, et al. Facet-dependent photocatalytic
[32] ZHANG X Y, YU X M, LI J X, et al. Construction of MOFs/g-C 3N 4 hydrogen production of metal-organic framework NH 2-MIL-125(Ti)
composite for accelerating visible-light-driven hydrogen evolution[J]. [J]. Chemical Science, 2019, 10(18): 4834-4838.
International Journal of Hydrogen Energy, 2022, 47(41): 18007- [50] WU B Y, LIU N, LU L L, et al. A MOF-derived hierarchical
18017. CoP@ZnIn 2S 4 photocatalyst for visible light-driven hydrogen
[33] GARCRÍA-SALCIDO V, MERCADO-OLIVA P, GUZMÁN-MAR J evolution[J]. Chemical Communications, 2022, 58(46): 6622-6625.
L, et al. MOF-based composites for visible-light-driven heterogeneous [51] ZHANG Y K, JIN Z L. Effective electron-hole separation over
photocatalysis: Synthesis, characterization and environmental application controllable construction of WP/UiO-66/CdS heterojunction for
studies[J]. Journal of Solid State Chemistry, 2022, 307: 122801. efficiently improved photocatalytic hydrogen evolution under visible-
[34] LIU Y, HUANG D L, CHENG M, et al. Metal sulfide/MOF-based light-driven[J]. Physical Chemistry Chemical Physics, 2019, 21:
composites as visible-light-driven photocatalysts for enhanced 8326-8341.
hydrogen production from water splitting[J]. Coordination Chemistry [52] LI H Y, GONG H M, JIN Z L. Phosphorus modified Ni-MOF-
Reviews, 2020, 409: 213220. 74/BiVO 4 S-scheme heterojunction for enhanced photocatalytic
[35] NIU L, ZHANG W G, LI H T, et al. The construction of double type hydrogen evolution[J]. Applied Catalysis B: Environmental, 2022,
Ⅱ heterostructure from CdS and Ni-MOF-74 with two structures and 307: 121166.
enhanced mechanism of photocatalytic water splitting[J]. Journal of [53] JIN Z L, ZHANG Y K, MA Q X. Orthorhombic WP co-catalyst
Materials Science, 2022, 57: 5768-5787. coupled with electron transfer bridge UiO-66 for efficient visible-
[36] WANG Z J, JIN Z L, WANG G R, et al. Efficient hydrogen light-driven H 2 evolution[J]. Journal of Colloid and Interface Science,
production over MOFs(ZIF-67) and g-C 3N 4 boosted with MoS 2 2019, 556: 689-703.
nanoparticles[J]. International Journal of Hydrogen Energy, 2018, [54] ZHANG L J, WANG G R, HAO X Q, et al. MOFs-derived Cu 3P@CoP
43(29): 13039-13050. p-n heterojunction for enhanced photocatalytic hydrogen evolution[J].
[37] CAO M T, YANG F L, ZHANG Q, et al. Facile construction of Chemical Engineering Journal, 2020, 395: 125113.
highly efficient MOF-based Pd@UiO-66-NH 2@ZnIn 2S 4 flower-like [55] LI T, JIN Z L. Unique ternary Ni-MOF-74/Ni 2P/MoS x composite for
nanocomposites for visible-light-driven photocatalytic hydrogen efficient photocatalytic hydrogen production: Role of Ni 2P for
production[J]. Journal of Materials Science & Technology, 2021, 76: accelerating separation of photogenerated carriers[J]. Journal of
189-199 Colloid and Interface Science, 2022, 605: 385-397.
[38] GUO J L, LIANG Y H, LIU L, et al. Noble-metal-free CdS/Ni-MOF [56] LIU S J, CHI D J, ZOU Q C, et al. MOFs-derived MoS 2/C 3N 4
composites with highly efficient charge separation for photocatalytic composites with highly efficient charge separation for photocatalytic
H 2 evolution[J]. Applied Surface Science, 2020, 522: 146356. H 2 evolution[J]. Inorganica Chimica Acta, 2022, 533: 120787.
[39] MAO S M, ZOU Y J, SUN G T, et al. Thio linkage between CdS [57] ZHOU W C, ZHANG W D. Anchoring nickel complex to g-C 3N 4
quantum dots and UiO-66-type MOFs as an effective transfer bridge enables an efficient photocatalytic hydrogen evolution reaction
of charge carriers boosting visible-light-driven photocatalytic through ligand-to-metal charge transfer mechanism[J]. Journal of
hydrogen production[J]. Journal of Colloid and Interface Science, Colloid and Interface Science, 2022, 616: 791-802.
2021, 581: 1-10. [58] TIAN L, YANG X F, LIU Q Q, et al. Anchoring metal-organic
[40] JIN Z L, LI T, WANG K, et al. Interface engineering: Synergism framework nanoparticles on graphitic carbon nitrides for solar-driven
between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution[J]. Applied Surface Science, 2018,
photocatalytic hydrogen evolution[J]. Journal of Colloid and 455: 403-409.
Interface Science, 2022, 609: 212-223. [59] ZHANG H, LI Q Y, WENG B, et al. Edge engineering of platinum
[41] SHEN L J, LUO M B, LIU Y H, et al. Noble-metal-free MoS 2 nanoparticles via porphyrin-based ultrathin 2D metal-organic
co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic frameworks for enhanced photocatalytic hydrogen generation[J].
H 2 production[J]. Applied Catalysis B: Environmental, 2015, 166/ Chemical Engineering Journal, 2022, 442: 136144.
167: 445-453. [60] LIANG Y H, SHANG R, LU J R, et al. 2D MOFs enriched g-C 3N 4
[42] CAO X L, ZHANG L G, CHEN T X, et al. MOF based sheet- nanosheets for highly efficient charge separation and photocatalytic
assembled flowers CdS-MoS 2 composite for enhanced visible-light hydrogen evolution from water[J]. International Journal of Hydrogen
hydrogen production[J]. Applied Surface Science, 2020, 511: 145355. Energy, 2019, 44(5): 2797-2810.