Page 107 - 《精细化工》2023年第3期
P. 107

第 3 期                    李亮荣,等:  基于 MOFs 材料光催化分解水制氢的研究进展                                 ·563·


            [25]  MESHRAM A A, MOSES K A, BARAL S S,  et al. Hydrogen   [43]  XUE K H, HE R, YANG T L, et al. MOF-based In 2S 3-X 2S 3(X=Bi;
                 production from water splitting of real-time industry effluent using   Sb)@TFPT-COFs hybrid materials for enhanced photocatalytic
                 novel photocatalyst[J]. Advanced Powder Technology, 2022, 33(3):   performance under visible light[J]. Applied Surface Science, 2019,
                 103488.                                           493: 41-54.
            [26]  LIU Y, CHENG H, CHENG M,  et al. The application of zeolitic   [44]  TRIPATHY S P, SUBUDHI S, DAS S,  et al. Hydrolytically stable
                 imidazolate frameworks (ZIFs) and their derivatives based materials   citrate capped Fe 3O 4@UiO-66-NH 2 MOF: A hetero-structure composite
                 for photocatalytic  hydrogen evolution and pollutants treatment[J].   with enhanced activity towards Cr( ) adsorption and photocatalytic Ⅵ
                 Chemical Engineering Journal, 2021, 417: 127914.   H 2 evolution[J]. Journal of Colloid and Interface Science, 2022,
            [27]  LAN M, GUO R M, DOU Y, et al. Fabrication of porous Pt-doping   606:353-366.
                 heterojunctions by using bimetallic MOF template for photocatalytic   [45]  EI-BERY H M,  ABDELHAMID H N. Photocatalytic hydrogen
                 hydrogen generation[J]. Nano Energy, 2017, 33: 238-246.   generation via water splitting using ZIF-67 derived Co 3O 4@C/TiO 2[J].
            [28]  WANG R, GU L N, ZHOU J J, et al. Quasi-polymeric metal-organic   Journal of Environmental Chemical Engineering, 2021, 9(4): 105702.
                 framework UiO-66/g-C 3N 4 heterojunctions for enhanced photocatalytic   [46]  ZHANG M, SHANG Q G, WAN Y Q, et al. Self-template synthesis
                 hydrogen evolution under visible light irradiation[J].  Advanced   of double-shell TiO 2@ZIF-8 hollow nanospheres via sonocrystallization
                 Materials Interfaces, 2015, 2(10): 1500037.       with enhanced photocatalytic  activities in hydrogen generation[J].
            [29]  QIU J H,  YANG  L, LI M,  et al.  Metal nanoparticles decorated   Applied Catalysis B: Environmental, 2019, 241: 149-158.
                 MIL-125-NH 2 and MIL-125 for efficient photocatalysis[J]. Materials   [47]  LI F X, JIAO  Y Q, LIU J N,  et al. Promoting the spatial charge
                 Research Bulletin, 2019, 112: 297-306.            separation by building porous ZrO 2@TiO 2 heterostructure toward
            [30] YU Y (余岩). Heterostructure based on titanium-based semiconductor   photocatalytic hydrogen evolution[J]. Journal of Colloid and
                 for hydrogen generation[D]. Hangzhou: Zhejiang University of   Interface Science, 2020, 561: 568-575.
                 Technology (浙江工业大学), 2019.                    [48]  SUN L M, YUAN Y S, WANG F,  et al. Selective wet-chemical
            [31]  WANG C C, YI X H, WANG P. Powerful combination of MOFs and   etching to create  TiO 2@MOF frame heterostructure for efficient
                 C 3N 4 for enhanced photocatalytic performance[J]. Applied Catalysis   photocatalytic hydrogen evolution[J]. Nano Energy, 2020, 74: 104909.
                 B: Environmental, 2019, 247: 24-48.           [49]  GUO F, GUO J H, WANG P, et al. Facet-dependent photocatalytic
            [32]  ZHANG X Y, YU X M, LI J X, et al. Construction of MOFs/g-C 3N 4   hydrogen  production  of metal-organic framework NH 2-MIL-125(Ti)
                 composite for  accelerating visible-light-driven hydrogen  evolution[J].   [J]. Chemical Science, 2019, 10(18): 4834-4838.
                 International Journal of Hydrogen Energy, 2022, 47(41): 18007-   [50]  WU B  Y, LIU N, LU L L,  et al. A MOF-derived hierarchical
                 18017.                                            CoP@ZnIn 2S 4 photocatalyst for visible light-driven hydrogen
            [33]  GARCRÍA-SALCIDO V, MERCADO-OLIVA P, GUZMÁN-MAR J   evolution[J]. Chemical Communications, 2022, 58(46): 6622-6625.
                 L, et al. MOF-based composites for visible-light-driven heterogeneous   [51]  ZHANG Y K, JIN Z L. Effective  electron-hole separation  over
                 photocatalysis: Synthesis, characterization and environmental application   controllable construction of  WP/UiO-66/CdS heterojunction for
                 studies[J]. Journal of Solid State Chemistry, 2022, 307: 122801.   efficiently improved photocatalytic hydrogen evolution under visible-
            [34]  LIU Y, HUANG D L, CHENG M, et al. Metal sulfide/MOF-based   light-driven[J]. Physical Chemistry  Chemical Physics, 2019, 21:
                 composites as visible-light-driven photocatalysts for  enhanced   8326-8341.
                 hydrogen production from water splitting[J]. Coordination Chemistry   [52]  LI H  Y, GONG H M, JIN Z L. Phosphorus modified  Ni-MOF-
                 Reviews, 2020, 409: 213220.                       74/BiVO 4  S-scheme heterojunction for enhanced photocatalytic
            [35]  NIU L, ZHANG W G, LI H T, et al. The construction of double type   hydrogen evolution[J]. Applied Catalysis B: Environmental, 2022,
                 Ⅱ heterostructure from CdS and Ni-MOF-74 with two structures and   307: 121166.
                 enhanced mechanism of photocatalytic water splitting[J]. Journal of   [53]  JIN Z L,  ZHANG Y K, MA Q  X.  Orthorhombic WP  co-catalyst
                 Materials Science, 2022, 57: 5768-5787.           coupled with electron transfer bridge UiO-66 for efficient visible-
            [36]  WANG Z J, JIN  Z L, WANG G  R, et al. Efficient hydrogen   light-driven H 2 evolution[J]. Journal  of  Colloid and Interface Science,
                 production over  MOFs(ZIF-67) and g-C 3N 4 boosted with  MoS 2   2019, 556: 689-703.
                 nanoparticles[J]. International Journal of Hydrogen Energy, 2018,   [54]  ZHANG L J, WANG G R, HAO X Q, et al. MOFs-derived Cu 3P@CoP
                 43(29): 13039-13050.                              p-n heterojunction for enhanced photocatalytic hydrogen evolution[J].
            [37]  CAO M T, YANG F L, ZHANG  Q,  et al. Facile construction of   Chemical Engineering Journal, 2020, 395: 125113.
                 highly efficient MOF-based Pd@UiO-66-NH 2@ZnIn 2S 4 flower-like   [55]  LI T, JIN Z L. Unique ternary Ni-MOF-74/Ni 2P/MoS x composite for
                 nanocomposites for visible-light-driven photocatalytic hydrogen   efficient  photocatalytic hydrogen production: Role of  Ni 2P for
                 production[J]. Journal of Materials Science & Technology, 2021, 76:   accelerating separation of  photogenerated carriers[J]. Journal of
                 189-199                                           Colloid and Interface Science, 2022, 605: 385-397.
            [38]  GUO J L, LIANG Y H, LIU L, et al. Noble-metal-free CdS/Ni-MOF   [56]  LIU S J, CHI D  J, ZOU Q C,  et al. MOFs-derived  MoS 2/C 3N 4
                 composites with highly efficient charge separation for photocatalytic   composites with highly efficient charge separation for photocatalytic
                 H 2 evolution[J]. Applied Surface Science, 2020, 522: 146356.   H 2 evolution[J]. Inorganica Chimica Acta, 2022, 533: 120787.
            [39]  MAO S M, ZOU Y J, SUN G T, et al. Thio linkage between CdS   [57]  ZHOU W C, ZHANG W D.  Anchoring  nickel complex  to g-C 3N 4
                 quantum dots and UiO-66-type MOFs as an effective transfer bridge   enables an efficient photocatalytic hydrogen evolution reaction
                 of charge carriers boosting visible-light-driven photocatalytic   through  ligand-to-metal charge transfer mechanism[J].  Journal  of
                 hydrogen production[J]. Journal  of Colloid and Interface Science,   Colloid and Interface Science, 2022, 616: 791-802.
                 2021, 581: 1-10.                              [58]  TIAN L, YANG X  F, LIU Q Q,  et al. Anchoring metal-organic
            [40]  JIN Z L, LI T, WANG K,  et al. Interface engineering:  Synergism   framework nanoparticles on graphitic carbon nitrides for solar-driven
                 between S-scheme heterojunctions and Mo-O bonds for promote   photocatalytic hydrogen evolution[J]. Applied Surface Science, 2018,
                 photocatalytic hydrogen evolution[J]. Journal of Colloid and   455: 403-409.
                 Interface Science, 2022, 609: 212-223.        [59]  ZHANG H, LI Q Y, WENG B, et al. Edge engineering of platinum
            [41]  SHEN L  J, LUO M  B,  LIU Y H,  et al. Noble-metal-free MoS 2   nanoparticles via porphyrin-based ultrathin 2D metal-organic
                 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic   frameworks for enhanced photocatalytic hydrogen generation[J].
                 H 2 production[J].  Applied Catalysis B: Environmental,  2015, 166/   Chemical Engineering Journal, 2022, 442: 136144.
                 167: 445-453.                                 [60]  LIANG Y H, SHANG R, LU J R, et al. 2D MOFs enriched g-C 3N 4
            [42]  CAO X L, ZHANG L G, CHEN T  X,  et al. MOF based sheet-   nanosheets for highly efficient charge separation and photocatalytic
                 assembled flowers  CdS-MoS 2 composite for enhanced visible-light   hydrogen evolution from water[J]. International Journal of Hydrogen
                 hydrogen production[J]. Applied Surface Science, 2020, 511: 145355.   Energy, 2019, 44(5): 2797-2810.
   102   103   104   105   106   107   108   109   110   111   112