Page 106 - 《精细化工》2023年第3期
P. 106

·562·                             精细化工   FINE CHEMICALS                                 第 40 卷

            能有效避免自然环境的恶化,也能实现中国“双碳”                                术), 2022, 11(10):3401-3410
                                                               [6]   WANG M H (王明华). The dilemma of the development of hydrogen
            目标。然而,太阳光催化转化效率离工业化要求还
                                                                   energy industry—“source” and “terminal”[J/OL]. Modern Chemical
            存在一定差距,且 MOFs 光催化剂的研究还处于初                              Industry ( 现代化工 ): 1-12[2022-08-19]. http://kns.cnki.net/
                                                                   kcms/detail/11.2172.TQ.20220728.1529.014.html.
            级阶段,相关研究仍面临着诸多挑战,未来可从以
                                                               [7]   OSHIRO K, FUJIMORI S. Role of hydrogen-based energy carriers
            下几个方面深入研究:                                             as an alternative option to reduce residual emissions associated with
                (1)开发设计合成基于特殊形貌结构的具有良                              mid-century decarbonization  goals[J]. Applied Energy, 2022, 313:
                                                                   118803.
            好光催化效应和性能的 MOFs 新型材料,如二维超                          [8]   AHSHAN R. Potential and economic analysis of solar-to-hydrogen
            薄金属有机框架(UMOFNs)等。通过改变 MOFs                             production in the sultanate of oman[J]. Sustainability, 2021, 13(17):
                                                                   9516.
            材料的比表面积、孔体积和孔径等,以提高 MOFs                           [9]   SADEGHI S, GHANDEHARIUN S. A standalone solar thermochemical
            吸附性并缩短光生电荷转移路径;结合 MOFs 材料                              water splitting hydrogen  plant with  high-temperature molten salt:
                                                                   Thermodynamic and economic analyses and multi-objective
            结构可设计性,开发更有利于光催化分解水制氢的                                 optimization[J]. Energy, 2022, 240: 122723.
            新型金属离子中心或掺杂合适金属离子改善能带结                             [10]  LIU G Y, SHENG Y, AGER J W, et al. Research advances towards
                                                                   large-scale solar hydrogen production from water[J]. Energy Chem,
            构,同时设计光敏能力更强的有机配体,如,可在
                                                                   2019, 1(2): 100014.
            有机配体上引入强助色基团—NH 2 ,增强光催化剂                          [11]  MA Z  W,  DAVENPORT P, SAUR G. System  and technoeconomic
            的光吸收能力,从而设计合成催化活性和光敏能力                                 analysis of solar thermochemical hydrogen production[J]. Renewable
                                                                   Energy, 2022, 190: 294-308.
            都较强的 MOFs 制氢光催化剂。                                  [12]  LI J  L (李建林),  LIANG Z H (梁忠豪), LI G H (李光辉),  et al.
                (2)探索高效稳定廉价的可修饰 MOFs 的敏化                           Analysis of key technologies for solar hydrogen production[J]. Acta
                                                                   Energiae Solaris Sinica (太阳能学报), 2022, 43(3): 2-11.
            剂材料,解决金属有机配合物类染料成本高、纯有                             [13]  IDRISS  H. Hydrogen production from water: Past and present[J].
            机染料稳定性差等问题。改进敏化剂修饰 MOFs 材                              Current Opinion in Chemical Engineering, 2020, 29: 74-82.
                                                               [14]  MA R (马荣), SUN J (孙杰), LI D H (李东辉), et al. Self-floating
            料工艺,设计合适的偶联技术以提高敏化剂的负载                                 high-efficient evaporative catalytic seawater hydrogen  production
            量、加强敏化剂与 MOFs 材料的相互作用,从而更                              system driven by concentrated solar  energy based on Cu/TiO 2/C-
                                                                   Wood composite[J]. CIESC Journal (化工学报), 2022, 73(4): 1695-
            好地拓宽 MOFs 光催化剂的光吸收范围,提高太阳                              1703.
            光的利用率。                                             [15]  LIANG Z Q, XUE Y J,  WANG X Y,  et al. The incorporation  of
                (3)采用先进的表征技术手段对 MOFs 光催化                           cocatalyst cobalt sulfide into graphitic carbon  nitride: Boosted
                                                                   photocatalytic hydrogen evolution  performance  and mechanism
            制氢进行详细表征,明晰 MOFs、复合材料、牺牲                               exploration[J/OL].  Nano Materials Science: 1-8[2022-05-22]. DOI:
            剂等物质的结构形貌及相互作用对制氢活性的影                                  10.1016/j.nanoms.2022.03.001.
                                                               [16]  LEE G J, CHIEN Y W, ANANDAN S, et al. Fabrication of metal-
            响。此外,还可以用特定的技术手段暴露光催化剂                                 doped BiOI/MOF composite photocatalysts with enhanced photocatalytic
            活性面,增多反应活性位点,改善 MOFs 材料的光                              performance[J]. International Journal  of Hydrogen Energy, 2021,
                                                                   46(8): 5949-5962.
            催化分解水制氢性能,以期解决现有光催化分解水                             [17]  ZHANG J N, HU W P, CAO S, et al. Recent progress for hydrogen
            制氢体系在产氢活性、稳定性以及转化率等方面的                                 production by photocatalytic natural or simulated seawater  splitting[J].
                                                                   Nano Research, 2020, 13(9): 2313-2322.
            不足。同时,深入对光生电子空穴对分离、转移等
                                                               [18]  SON N, DO J Y, KANG M. Characterization of core@shell-structured
            微观过程的理论研究,为后续 MOFs 光催化剂的设                              ZnO@Sb 2S 3 particles for effective hydrogen production from water
                                                                   photo spitting[J]. Ceramics International, 2017, 43(14): 11250-11259.
            计改性提供理论指导,并为光催化分解水制氢的大
                                                               [19]  RAO V N, RAVI P, SATHISH M, et al. Metal chalcogenide-based
            规模工业化带来新的契机。                                           core/shell  photocatalysts for solar hydrogen  production: Recent
                                                                   advances, properties and technology challenges[J]. Journal of
            参考文献:                                                  Hazardous Materials, 2021, 415: 125588.
                                                               [20]  WANG  Q Y, XIAO L, LIU  X,  et al. Special  Z-scheme Cu 3P/TiO 2
            [1]   BREY J J. Use of hydrogen as a seasonal energy storage system to   hetero-junction for efficient photocatalytic hydrogen evolution from
                 manage renewable power deployment in Spain by 2030[J]. International   water[J]. Journal of Alloys and Compounds, 2022, 894: 162331.
                 Journal of Hydrogen Energy, 2020, 46(63): 17447-17457.     [21]  TASLEEM S, TAHIR M, KHALIFA W A. Current trends in structural
            [2]   ZHANG Y, SUN  H X, TAN J X,  et al. Capacity configuration   development and modification strategies for metal-organic frameworks
                 optimization of  multi-energy system integrating wind turbine/   (MOFs) towards photocatalytic H 2 production: A review[J]. International
                 photovoltaic/hydrogen/battery[J]. Energy, 2022, 252: 124046.   Journal of Hydrogen Energy, 2021, 46(27): 14148-14189.
            [3]   Hydrogen Council. Hydrogen insights: A perspective on hydrogen   [22]  ZHANG T T (张婷婷), TONG S Y (仝淑月), YANG X (杨熙), et al.
                 investment, market development and cost competitiveness[R]. The   Recent progress in application of  porphyrin-based metal-organic
                 Hydrogen Council, 2021.                           framework materials in photocatalytic  reactions[J]. Fine Chemicals
            [4]   TENG X Y (滕欣余), ZHANG G H (张国华), HU C S (胡辰树), et al.   (精细化工), 2019, 36(8): 1507-1512.
                 Analysis on hydrogen energy economy and low cost of hydrogen   [23]  DUAN C X, LIANG K, LIN J H, et al. Application of hierarchically
                 source in typical cities of China[J]. Chemical Industry and   porous metal-organic frameworks in heterogeneous catalysis: A
                 Engineering Progress(化工进展), 2022, 41(12): 6295-6301.     review[J]. Science China Materials, 2022, 65(2): 298-320.
            [5]   WAN Y M (万燕鸣), XIONG Y L (熊亚林), WANG X Y (王雪颖).   [24]  ZHANG  Z H (张智华). Preparation and catalytic properties  of
                 Strategic analysis of hydrogen energy development in major   UiO-66 supported Pt catalysts[D]. Nanchang: Nanchang University
                 countries[J]. Energy Storage Science and Technology(储能科学与技  (南昌大学), 2020.
   101   102   103   104   105   106   107   108   109   110   111