Page 106 - 《精细化工》2023年第3期
P. 106
·562· 精细化工 FINE CHEMICALS 第 40 卷
能有效避免自然环境的恶化,也能实现中国“双碳” 术), 2022, 11(10):3401-3410
[6] WANG M H (王明华). The dilemma of the development of hydrogen
目标。然而,太阳光催化转化效率离工业化要求还
energy industry—“source” and “terminal”[J/OL]. Modern Chemical
存在一定差距,且 MOFs 光催化剂的研究还处于初 Industry ( 现代化工 ): 1-12[2022-08-19]. http://kns.cnki.net/
kcms/detail/11.2172.TQ.20220728.1529.014.html.
级阶段,相关研究仍面临着诸多挑战,未来可从以
[7] OSHIRO K, FUJIMORI S. Role of hydrogen-based energy carriers
下几个方面深入研究: as an alternative option to reduce residual emissions associated with
(1)开发设计合成基于特殊形貌结构的具有良 mid-century decarbonization goals[J]. Applied Energy, 2022, 313:
118803.
好光催化效应和性能的 MOFs 新型材料,如二维超 [8] AHSHAN R. Potential and economic analysis of solar-to-hydrogen
薄金属有机框架(UMOFNs)等。通过改变 MOFs production in the sultanate of oman[J]. Sustainability, 2021, 13(17):
9516.
材料的比表面积、孔体积和孔径等,以提高 MOFs [9] SADEGHI S, GHANDEHARIUN S. A standalone solar thermochemical
吸附性并缩短光生电荷转移路径;结合 MOFs 材料 water splitting hydrogen plant with high-temperature molten salt:
Thermodynamic and economic analyses and multi-objective
结构可设计性,开发更有利于光催化分解水制氢的 optimization[J]. Energy, 2022, 240: 122723.
新型金属离子中心或掺杂合适金属离子改善能带结 [10] LIU G Y, SHENG Y, AGER J W, et al. Research advances towards
large-scale solar hydrogen production from water[J]. Energy Chem,
构,同时设计光敏能力更强的有机配体,如,可在
2019, 1(2): 100014.
有机配体上引入强助色基团—NH 2 ,增强光催化剂 [11] MA Z W, DAVENPORT P, SAUR G. System and technoeconomic
的光吸收能力,从而设计合成催化活性和光敏能力 analysis of solar thermochemical hydrogen production[J]. Renewable
Energy, 2022, 190: 294-308.
都较强的 MOFs 制氢光催化剂。 [12] LI J L (李建林), LIANG Z H (梁忠豪), LI G H (李光辉), et al.
(2)探索高效稳定廉价的可修饰 MOFs 的敏化 Analysis of key technologies for solar hydrogen production[J]. Acta
Energiae Solaris Sinica (太阳能学报), 2022, 43(3): 2-11.
剂材料,解决金属有机配合物类染料成本高、纯有 [13] IDRISS H. Hydrogen production from water: Past and present[J].
机染料稳定性差等问题。改进敏化剂修饰 MOFs 材 Current Opinion in Chemical Engineering, 2020, 29: 74-82.
[14] MA R (马荣), SUN J (孙杰), LI D H (李东辉), et al. Self-floating
料工艺,设计合适的偶联技术以提高敏化剂的负载 high-efficient evaporative catalytic seawater hydrogen production
量、加强敏化剂与 MOFs 材料的相互作用,从而更 system driven by concentrated solar energy based on Cu/TiO 2/C-
Wood composite[J]. CIESC Journal (化工学报), 2022, 73(4): 1695-
好地拓宽 MOFs 光催化剂的光吸收范围,提高太阳 1703.
光的利用率。 [15] LIANG Z Q, XUE Y J, WANG X Y, et al. The incorporation of
(3)采用先进的表征技术手段对 MOFs 光催化 cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted
photocatalytic hydrogen evolution performance and mechanism
制氢进行详细表征,明晰 MOFs、复合材料、牺牲 exploration[J/OL]. Nano Materials Science: 1-8[2022-05-22]. DOI:
剂等物质的结构形貌及相互作用对制氢活性的影 10.1016/j.nanoms.2022.03.001.
[16] LEE G J, CHIEN Y W, ANANDAN S, et al. Fabrication of metal-
响。此外,还可以用特定的技术手段暴露光催化剂 doped BiOI/MOF composite photocatalysts with enhanced photocatalytic
活性面,增多反应活性位点,改善 MOFs 材料的光 performance[J]. International Journal of Hydrogen Energy, 2021,
46(8): 5949-5962.
催化分解水制氢性能,以期解决现有光催化分解水 [17] ZHANG J N, HU W P, CAO S, et al. Recent progress for hydrogen
制氢体系在产氢活性、稳定性以及转化率等方面的 production by photocatalytic natural or simulated seawater splitting[J].
Nano Research, 2020, 13(9): 2313-2322.
不足。同时,深入对光生电子空穴对分离、转移等
[18] SON N, DO J Y, KANG M. Characterization of core@shell-structured
微观过程的理论研究,为后续 MOFs 光催化剂的设 ZnO@Sb 2S 3 particles for effective hydrogen production from water
photo spitting[J]. Ceramics International, 2017, 43(14): 11250-11259.
计改性提供理论指导,并为光催化分解水制氢的大
[19] RAO V N, RAVI P, SATHISH M, et al. Metal chalcogenide-based
规模工业化带来新的契机。 core/shell photocatalysts for solar hydrogen production: Recent
advances, properties and technology challenges[J]. Journal of
参考文献: Hazardous Materials, 2021, 415: 125588.
[20] WANG Q Y, XIAO L, LIU X, et al. Special Z-scheme Cu 3P/TiO 2
[1] BREY J J. Use of hydrogen as a seasonal energy storage system to hetero-junction for efficient photocatalytic hydrogen evolution from
manage renewable power deployment in Spain by 2030[J]. International water[J]. Journal of Alloys and Compounds, 2022, 894: 162331.
Journal of Hydrogen Energy, 2020, 46(63): 17447-17457. [21] TASLEEM S, TAHIR M, KHALIFA W A. Current trends in structural
[2] ZHANG Y, SUN H X, TAN J X, et al. Capacity configuration development and modification strategies for metal-organic frameworks
optimization of multi-energy system integrating wind turbine/ (MOFs) towards photocatalytic H 2 production: A review[J]. International
photovoltaic/hydrogen/battery[J]. Energy, 2022, 252: 124046. Journal of Hydrogen Energy, 2021, 46(27): 14148-14189.
[3] Hydrogen Council. Hydrogen insights: A perspective on hydrogen [22] ZHANG T T (张婷婷), TONG S Y (仝淑月), YANG X (杨熙), et al.
investment, market development and cost competitiveness[R]. The Recent progress in application of porphyrin-based metal-organic
Hydrogen Council, 2021. framework materials in photocatalytic reactions[J]. Fine Chemicals
[4] TENG X Y (滕欣余), ZHANG G H (张国华), HU C S (胡辰树), et al. (精细化工), 2019, 36(8): 1507-1512.
Analysis on hydrogen energy economy and low cost of hydrogen [23] DUAN C X, LIANG K, LIN J H, et al. Application of hierarchically
source in typical cities of China[J]. Chemical Industry and porous metal-organic frameworks in heterogeneous catalysis: A
Engineering Progress(化工进展), 2022, 41(12): 6295-6301. review[J]. Science China Materials, 2022, 65(2): 298-320.
[5] WAN Y M (万燕鸣), XIONG Y L (熊亚林), WANG X Y (王雪颖). [24] ZHANG Z H (张智华). Preparation and catalytic properties of
Strategic analysis of hydrogen energy development in major UiO-66 supported Pt catalysts[D]. Nanchang: Nanchang University
countries[J]. Energy Storage Science and Technology(储能科学与技 (南昌大学), 2020.