Page 95 - 《精细化工》2023年第4期
P. 95

す 4 ᱌                       䗏ᖖₐ喑ぶ:  䚣/MOFs ฺवᱽ᫆יࡃᕔ㘪䄰ᣔࣷᏁ⩕                                 g781g


                 Application of immobilized enzymes in food industry[J]. Journal of   ACS Nano, 2016, 10(10): 9174-9182.
                 Agricultural and Food Chemistry, 2019, 67(42): 11553-11567.   [21]  GAO X,  DING  Y, SHENG Y  D,  et al. Enzyme immobilization in
            [2]   DA SILVA R R. Agricultural enzymes, phosphatases, peptidases, and   MOF-derived porous NiO with hierarchical structure: An efficient
                 sulfatases and the expectations for sustainable agriculture[J]. Journal   and stable enzymatic reactor[J]. ChemCatChem, 2019, 11(12):
                 of Agricultural and Food Chemistry, 2019, 67(16): 4395-4396.   2828-2836.
            [3]   LIU J, MA R T, SHI Y P. An immobilization enzyme for screening   [22]  WU J C, WANG Y, HAN J, et al. A method of preparing mesoporous
                 lipase inhibitors from tibetan medicines[J]. Journal of Chromatography   Zr-based MOF and application in enhancing immobilization of
                 A, 2020, 1615: 460711.                            cellulase on carrier surface[J]. Biochemical Engineering Journal,
            [4]   TORRES CASTILLO N E, MELCHOR-MARTINEZ E M, OCHOA   2022, 180: 108342.
                 SIERRA J S, et al. Enzyme mimics in-focus: Redefining the catalytic   [23]  WANG  L, ZHI W J, WAN J,  et al. Recyclable  ȕ-glucosidase by
                 attributes of artificial enzymes for renewable energy production[J].   one-pot encapsulation with Cu-MOFs for enhanced hydrolysis of
                 International Journal of Biological Macromolecules, 2021, 179: 80-89.   cellulose to glucose[J]. ACS Sustainable Chemistry & Engineering,
            [5]   HU Y  L,  DAI L M,  LIU D  H,  et al. Progress & prospect of   2019, 7(3): 3339-3348.
                 metal-organic frameworks (MOFs) for enzyme immobilization   [24]  HSU P H, CHANG C C,  WANG  T  H,  et al. Rapid fabrication  of
                 (enzyme/MOFs)[J]. Renewable  and Sustainable Energy Reviews,   biocomposites by encapsulating enzymes into Zn-MOF-74 via a mild
                 2018, 91: 793-801.                                water-based approach[J]. ACS Applied Materials & Interfaces, 2021,
            [6]   YAASHIKAA P  R, DEVI M K, KUMAR P S. Advances in the   13(44): 52014-52022.
                 application of immobilized enzyme for the remediation of hazardous   [25]  MOTAMEDI N,  BARANI M, LOHRASBI-NEJAD  A,  et al.
                 pollutant: A review[J]. Chemosphere, 2022, 299: 134390.   Enhancement of thermostability of aspergillus flavus urate oxidase
            [7]   XU J (ᒽᲝ), SUN X T (ႆ㺬ह),  LI Q (ᱻҒ),  et al. Study on   by immobilization on the Ni-based magnetic metal-organic framework[J].
                 hydrolysis of naringin by immobilized naringinase on magnetic silica   Nanomaterials, 2021, 11(7): 1759.
                 chitosan microspheres[J]. Fine Chemicals (㇫㏳ࡃጒ), 2018, 35(11):   [26]  WANG J  Z,  ZHAO G  H,  YU  F Q. Facile preparation of
                 1885-1892.                                        Fe 3O 4@MOF core-shell microspheres for lipase immobilization[J].
            [8]   ZOU  B, WANG P Y, XIA J J,  et al. Enzyme biosensors systems   Journal of the Taiwan Institute of Chemical Engineers, 2016, 69:
                 based on co-modification of carbon  nanotubes and enzyme for   139-145.
                 detection of  glucose in food[J]. Journal of the Electrochemical   [27]  KOO J,  HWANG I, YU  X J,  et al. Hollowing out MOFs:
                 Society, 2021, 168(6): 65501.                     Hierarchical  micro-and mesoporous MOFs with  tailorable porosity
            [9]   SANTOS M P F, PORFIRIO M C P, JUNIOR E C S, et al. Pepsin   via selective acid etching[J]. Chemical Science, 2017, 8(10): 6799-
                 immobilization: Influence of carbon  support  functionalization[J].   6803.
                 International Journal of Biological Macromolecules, 2022, 203: 67-79.   [28]  CHENG K P, SVEC F, LV Y Q,  et al. Hierarchical  micro- and
            [10]  MANDAL B, MONDAL  S, HANSDA  B,  et al. Multipoint   mesoporous Zn-based metal-organic frameworks templated by
                 immobilization at  the inert center of urease on homofunctional   hydrogels: Their use for enzyme immobilization and catalysis of
                 diazo-activated silica gel: A way of restoring room-temperature   Knoevenagel reaction[J]. Small, 2019, 15(44): 1902927.
                 catalytic sustainability for  perennial  utilization[J]. Langmuir, 2022,   [29]  LI P, MOON S Y,  GUELTA M A,  et al. Encapsulation of a nerve
                 38(22): 6826-6840.                                agent detoxifying enzyme by a mesoporous zirconium metal-organic
            [11]  RIBEIRO E S, DE FARIAS B S, SANT'ANNA CADAVAL JUNIOR   framework engenders thermal and long-term stability[J]. Journal of
                 T R, et al. Chitosan-based nanofibers for enzyme immobilization[J].   the American Chemical Society, 2016, 138(26): 8052-8055.
                 International Journal of Biological Macromolecules, 2021, 183:   [30]  DUTTA S, KUMARI N, DUBBU  S,  et al. Highly  mesoporous
                 1959-1970.                                        metal-organic frameworks as synergistic multimodal catalytic platforms
            [12]  SI J J, ZHANG S, LIU X M, et al. Flower-shaped Ni/Co MOF with   for divergent cascade reactions[J]. Angewandte Chemie International
                 the highest adsorption capacity for reactive dyes[J]. Langmuir, 2022,   Edition, 2020, 59(9): 3416-3422.
                 38(19): 6004-6012.                            [31]  NAVARRO-SANCHEZ J, ALMORA-BARRIOS N, LERMA-
            [13]  PISKLAK T J, MACIAS M, COUTINHO D H,  et al. Hybrid   BERLANGA B, et al. Translocation of enzymes into a mesoporous
                 materials for immobilization  of  MP-11 catalyst[J]. Topics in   MOF for enhanced catalytic activity  under extreme  conditions[J].
                 Catalysis, 2006, 38(4): 269-278.                  Chemical Science, 2021, 10(14): 4082-4088.
            [14]  MEHTA J,  BHARDWAJ N, BHARDWAJ S K,  et al. Recent   [32]  HAN  L J, ZHENG D,  CHEN S G,  et al. A highly solvent-stable
                 advances in enzyme immobilization techniques: Metal-organic   metal-organic framework nanosheet: Morphology control, exfoliation,
                 frameworks as novel substrates[J]. Coordination Chemistry Reviews,   and luminescent property[J]. Small, 2018, 14(17): 1703873.
                 2016, 322: 30-40.                             [33]  PATHAK A, SHEN J  W, USMAN M,  et al. Integration of a
            [15]  GKANIATSOU E, SICARD C, RICOUX  R,  et al. Metal-organic   —(  Cu—S—) n   plane in a metal-organic framework affords high
                 frameworks: A novel host platform  for enzymatic  catalysis and   electrical conductivity[J]. Nature Communications, 2019, 10: 1721.
                 detection[J]. Materials Horizons, 2017, 4(1): 55-63.   [34]  XIE L S, SKORUPSKII G, DINCĂ M.  Electrically conductive
            [16]  LIANG W B, WIED P, CARRARO F, et al. Metal-organic framework-   metal-organic frameworks[J]. Chemical  Reviews, 2020, 120(16):
                 based enzyme biocomposites[J]. Chemical Reviews, 2021, 121(3):   8536-8580.
                 1077-1129.                                    [35]  DHAKSHINAMOORTHY  A, ASIRI A M, GARCIA H. 2D
            [17]  LI R Z,  LIU S J, ZHOU  X L,  et al. Efficient immobilization of   metal-organic frameworks as multifunctional materials in heterogeneous
                 catalase on mesoporous MIL-101 (Cr) and its catalytic activity   catalysis and electro/photocatalysis[J].  Advanced Materials, 2019,
                 assay[J]. Enzyme and Microbial Technology, 2022, 156: 110005.   31(41): 1900617.
            [18]  XU M, MENG S  S, LIANG H,  et al. A  metal-organic framework   [36]  MA J P, YUAN J H, XU Y Y, et al. Ultrasensitive electrochemical
                 with tunable exposed facets as a high-affinity artificial receptor for   determination of bisphenol A in food samples based on a strategy for
                 enzyme inhibition[J]. Inorganic Chemistry Frontiers, 2020, 7(19):   activity enhancement of enzyme: Layer-by-layer self-assembly of
                 3687-3694.                                        tyrosinase between two-dimensional porphyrin metal-organic framework
            [19]  WU J C, HAN J, MAO Y L, et al. Bionic mineralization growth of   nanofilms[J]. Chemical Engineering Journal, 2022, 446: 137001.
                 UiO-66 with bovine serum for facile synthesis of Zr-MOF with   [37]  MA J P,  CHEN G Z, BAI W S,  et al. Amplified electrochemical
                 adjustable mesopores and its application in enzyme immobilization[J].   hydrogen peroxide sensing based on Cu-porphyrin metal-organic
                 Separation and Purification Technology, 2022, 297: 121505.   framework nanofilm and G-quadruplex-hemin DNAzyme[J]. ACS
            [20]  LI P, MOON S Y, GUELTA M A, et al. Nanosizing a metal-organic   Applied Materials & Interfaces, 2020, 12(52): 58105-58112.
                 framework enzyme carrier for accelerating nerve agent hydrolysis[J].   [38]  WANG  J, HU C,  WANG Y  S,  et al. Chemiluminescent two-
   90   91   92   93   94   95   96   97   98   99   100