Page 95 - 《精细化工》2023年第4期
P. 95
す 4 䗏ᖖₐ喑ぶ: 䚣/MOFs ฺवᱽ᫆יࡃᕔ㘪䄰ᣔࣷᏁ⩕ g781g
Application of immobilized enzymes in food industry[J]. Journal of ACS Nano, 2016, 10(10): 9174-9182.
Agricultural and Food Chemistry, 2019, 67(42): 11553-11567. [21] GAO X, DING Y, SHENG Y D, et al. Enzyme immobilization in
[2] DA SILVA R R. Agricultural enzymes, phosphatases, peptidases, and MOF-derived porous NiO with hierarchical structure: An efficient
sulfatases and the expectations for sustainable agriculture[J]. Journal and stable enzymatic reactor[J]. ChemCatChem, 2019, 11(12):
of Agricultural and Food Chemistry, 2019, 67(16): 4395-4396. 2828-2836.
[3] LIU J, MA R T, SHI Y P. An immobilization enzyme for screening [22] WU J C, WANG Y, HAN J, et al. A method of preparing mesoporous
lipase inhibitors from tibetan medicines[J]. Journal of Chromatography Zr-based MOF and application in enhancing immobilization of
A, 2020, 1615: 460711. cellulase on carrier surface[J]. Biochemical Engineering Journal,
[4] TORRES CASTILLO N E, MELCHOR-MARTINEZ E M, OCHOA 2022, 180: 108342.
SIERRA J S, et al. Enzyme mimics in-focus: Redefining the catalytic [23] WANG L, ZHI W J, WAN J, et al. Recyclable ȕ-glucosidase by
attributes of artificial enzymes for renewable energy production[J]. one-pot encapsulation with Cu-MOFs for enhanced hydrolysis of
International Journal of Biological Macromolecules, 2021, 179: 80-89. cellulose to glucose[J]. ACS Sustainable Chemistry & Engineering,
[5] HU Y L, DAI L M, LIU D H, et al. Progress & prospect of 2019, 7(3): 3339-3348.
metal-organic frameworks (MOFs) for enzyme immobilization [24] HSU P H, CHANG C C, WANG T H, et al. Rapid fabrication of
(enzyme/MOFs)[J]. Renewable and Sustainable Energy Reviews, biocomposites by encapsulating enzymes into Zn-MOF-74 via a mild
2018, 91: 793-801. water-based approach[J]. ACS Applied Materials & Interfaces, 2021,
[6] YAASHIKAA P R, DEVI M K, KUMAR P S. Advances in the 13(44): 52014-52022.
application of immobilized enzyme for the remediation of hazardous [25] MOTAMEDI N, BARANI M, LOHRASBI-NEJAD A, et al.
pollutant: A review[J]. Chemosphere, 2022, 299: 134390. Enhancement of thermostability of aspergillus flavus urate oxidase
[7] XU J (ᒽᲝ), SUN X T (ႆ㺬ह), LI Q (ᱻҒ), et al. Study on by immobilization on the Ni-based magnetic metal-organic framework[J].
hydrolysis of naringin by immobilized naringinase on magnetic silica Nanomaterials, 2021, 11(7): 1759.
chitosan microspheres[J]. Fine Chemicals (㏳ࡃጒ), 2018, 35(11): [26] WANG J Z, ZHAO G H, YU F Q. Facile preparation of
1885-1892. Fe 3O 4@MOF core-shell microspheres for lipase immobilization[J].
[8] ZOU B, WANG P Y, XIA J J, et al. Enzyme biosensors systems Journal of the Taiwan Institute of Chemical Engineers, 2016, 69:
based on co-modification of carbon nanotubes and enzyme for 139-145.
detection of glucose in food[J]. Journal of the Electrochemical [27] KOO J, HWANG I, YU X J, et al. Hollowing out MOFs:
Society, 2021, 168(6): 65501. Hierarchical micro-and mesoporous MOFs with tailorable porosity
[9] SANTOS M P F, PORFIRIO M C P, JUNIOR E C S, et al. Pepsin via selective acid etching[J]. Chemical Science, 2017, 8(10): 6799-
immobilization: Influence of carbon support functionalization[J]. 6803.
International Journal of Biological Macromolecules, 2022, 203: 67-79. [28] CHENG K P, SVEC F, LV Y Q, et al. Hierarchical micro- and
[10] MANDAL B, MONDAL S, HANSDA B, et al. Multipoint mesoporous Zn-based metal-organic frameworks templated by
immobilization at the inert center of urease on homofunctional hydrogels: Their use for enzyme immobilization and catalysis of
diazo-activated silica gel: A way of restoring room-temperature Knoevenagel reaction[J]. Small, 2019, 15(44): 1902927.
catalytic sustainability for perennial utilization[J]. Langmuir, 2022, [29] LI P, MOON S Y, GUELTA M A, et al. Encapsulation of a nerve
38(22): 6826-6840. agent detoxifying enzyme by a mesoporous zirconium metal-organic
[11] RIBEIRO E S, DE FARIAS B S, SANT'ANNA CADAVAL JUNIOR framework engenders thermal and long-term stability[J]. Journal of
T R, et al. Chitosan-based nanofibers for enzyme immobilization[J]. the American Chemical Society, 2016, 138(26): 8052-8055.
International Journal of Biological Macromolecules, 2021, 183: [30] DUTTA S, KUMARI N, DUBBU S, et al. Highly mesoporous
1959-1970. metal-organic frameworks as synergistic multimodal catalytic platforms
[12] SI J J, ZHANG S, LIU X M, et al. Flower-shaped Ni/Co MOF with for divergent cascade reactions[J]. Angewandte Chemie International
the highest adsorption capacity for reactive dyes[J]. Langmuir, 2022, Edition, 2020, 59(9): 3416-3422.
38(19): 6004-6012. [31] NAVARRO-SANCHEZ J, ALMORA-BARRIOS N, LERMA-
[13] PISKLAK T J, MACIAS M, COUTINHO D H, et al. Hybrid BERLANGA B, et al. Translocation of enzymes into a mesoporous
materials for immobilization of MP-11 catalyst[J]. Topics in MOF for enhanced catalytic activity under extreme conditions[J].
Catalysis, 2006, 38(4): 269-278. Chemical Science, 2021, 10(14): 4082-4088.
[14] MEHTA J, BHARDWAJ N, BHARDWAJ S K, et al. Recent [32] HAN L J, ZHENG D, CHEN S G, et al. A highly solvent-stable
advances in enzyme immobilization techniques: Metal-organic metal-organic framework nanosheet: Morphology control, exfoliation,
frameworks as novel substrates[J]. Coordination Chemistry Reviews, and luminescent property[J]. Small, 2018, 14(17): 1703873.
2016, 322: 30-40. [33] PATHAK A, SHEN J W, USMAN M, et al. Integration of a
[15] GKANIATSOU E, SICARD C, RICOUX R, et al. Metal-organic —( Cu—S—) n plane in a metal-organic framework affords high
frameworks: A novel host platform for enzymatic catalysis and electrical conductivity[J]. Nature Communications, 2019, 10: 1721.
detection[J]. Materials Horizons, 2017, 4(1): 55-63. [34] XIE L S, SKORUPSKII G, DINCĂ M. Electrically conductive
[16] LIANG W B, WIED P, CARRARO F, et al. Metal-organic framework- metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16):
based enzyme biocomposites[J]. Chemical Reviews, 2021, 121(3): 8536-8580.
1077-1129. [35] DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H. 2D
[17] LI R Z, LIU S J, ZHOU X L, et al. Efficient immobilization of metal-organic frameworks as multifunctional materials in heterogeneous
catalase on mesoporous MIL-101 (Cr) and its catalytic activity catalysis and electro/photocatalysis[J]. Advanced Materials, 2019,
assay[J]. Enzyme and Microbial Technology, 2022, 156: 110005. 31(41): 1900617.
[18] XU M, MENG S S, LIANG H, et al. A metal-organic framework [36] MA J P, YUAN J H, XU Y Y, et al. Ultrasensitive electrochemical
with tunable exposed facets as a high-affinity artificial receptor for determination of bisphenol A in food samples based on a strategy for
enzyme inhibition[J]. Inorganic Chemistry Frontiers, 2020, 7(19): activity enhancement of enzyme: Layer-by-layer self-assembly of
3687-3694. tyrosinase between two-dimensional porphyrin metal-organic framework
[19] WU J C, HAN J, MAO Y L, et al. Bionic mineralization growth of nanofilms[J]. Chemical Engineering Journal, 2022, 446: 137001.
UiO-66 with bovine serum for facile synthesis of Zr-MOF with [37] MA J P, CHEN G Z, BAI W S, et al. Amplified electrochemical
adjustable mesopores and its application in enzyme immobilization[J]. hydrogen peroxide sensing based on Cu-porphyrin metal-organic
Separation and Purification Technology, 2022, 297: 121505. framework nanofilm and G-quadruplex-hemin DNAzyme[J]. ACS
[20] LI P, MOON S Y, GUELTA M A, et al. Nanosizing a metal-organic Applied Materials & Interfaces, 2020, 12(52): 58105-58112.
framework enzyme carrier for accelerating nerve agent hydrolysis[J]. [38] WANG J, HU C, WANG Y S, et al. Chemiluminescent two-