Page 79 - 《精细化工》2023年第5期
P. 79

第 5 期                    葛界芳,等:  抑制癌症治疗多药耐药性的纳米药物递送体系                                    ·999·


                 Drug Resistance Updates, 2019, 46: 100645.    [30]  ZHU Y Q, FEIJEN F, ZHONG Z Y. Dual-targeted nanomedicines for
            [9]   LEE W K,  MAA  M, QUACH A,  et al. Dependence of ABCB1   enhanced tumor treatment[J]. Nano Today, 2018, 18: 65-85.
                 transporter expression and function on distinct sphingolipids generated   [31]  CHAN M S, LIU  L S, LEUNG H  M,  et al. Cancer-cell-specific
                 by ceramide synthases-2 and -6 in chemoresistant renal cancer[J].   mitochondria-targeted  drug delivery by  dual-ligand-functionalized
                 The Journal of Biological Chemistry, 2021, 298(2): 101492.   nanodiamonds circumvent drug resistance[J]. ACS Applied Materials
            [10]  KARIN H, ANDRE M, DIPITA B G, et al. The role of p53 in cancer   & Interfaces, 2017, 9(13): 11780-11789.
                 drug resistance and targeted chemotherapy[J]. Oncotarget, 2017,   [32]  YAO Q, CHOI J H, DAI Z, et al. Improving tumor specificity and
                 8(5): 8921-8946.                                  anticancer activity of dasatinib by dual-targeted polymeric micelles[J].
            [11]  AMAWI H, SIM  H M,  TIWARI A K,  et al. ABC transporter-   ACS Applied Materials & Interfaces, 2017, 9(42): 36642-36654.
                 mediated  multidrug-resistant cancer[J]. Advances in Experimental   [33]  WANG R H, BAI J, DENG J, et al. TAT-modified gold nanoparticle
                 Mdicine and Biology, 2019, 1141: 549-580.         carrier with enhanced anticancer activity and  size effect on
            [12]  LEE C, KIM M, KIM D W, et al. Acquired Resistance Mechanism of   overcoming multidrug  resistance[J].  ACS Applied Materials &
                 EGFR kinase domain duplication to EGFR TKIs in non-small  cell   Interfaces, 2017, 9(7): 5828-5837.
                 lung cancer[J]. Cancer Research and Treatment, 2022. 54(1): 140-149.   [34]  YU D H, LIU Y  R, LUAN X,  et al. IF7-conjugated nanoparticles
            [13]  LHEUREUX S, MIRZA M, COLEMAN R. The DNA repair pathway   target Annexin 1 of tumor vasculature against P-gp mediated multidrug
                 as a target for novel drugs in gynecologic cancers[J]. Journal of Clinical   resistance[J]. Bioconjugate Chemistry, 2015, 26(8): 1702-1712.
                 Oncology: Official Journal of the American Society  of Clinical   [35]  QIN Y, ZHANG Z M, HUANG  C L,  et al. Folate-targeted redox-
                 Oncology, 2019, 37(27): 2449-2459.                responsive polymersomes loaded with chemotherapeutic  drugs and
            [14]  ISMAIL M M F, FARRAG A M, HARRAS M F, et al. Apoptosis: A   tariquidar to overcome drug resistance[J]. Journal of Biomedical
                 target for anticancer therapy with novel cyanopyridines[J].   Nanotechnology, 2018, 14(10): 1705-1718.
                 Bioorganic Chemistry, 2020, 94: 103481.       [36]  GUO F Y, YU N, JIAO Y L, et al. Star polyester-based folate acid-
            [15]  PRIETO-VILA M, TAKAHASHI R, USUBA W, et al. Drug resistance   targeting nanoparticles for doxorubicin and curcumin co-delivery to
                 driven by cancer stem cells and their niche[J]. International Journal   combat  multidrug-resistant  breast cancer[J]. Drug Delivery, 2021,
                 of Molecular Sciences, 2017, 18(12): 2574.        28(1): 1709-1721.
            [16]  MEHRAJ U, DAR A H, WANI N A, et al. Tumor microenvironment   [37]  SHOME R, GHOSH S S. Transferrin coated d-penicillamine-Au-Cu
                 promotes breast cancer chemoresistance[J].  Cancer  Chemotherapy   nanocluster PLGA nanocomposite reverses hypoxia-induced EMT
                 and Pharmacology, 2021, 87(2): 1-12.              and MDR of triple-negative breast cancers[J]. ACS Applied Bio
            [17]  SHEIKH A, ALHAKAMY N A, MD S,  et al. Recent progress of   Materials, 2021, 4(6): 5033-5048.
                 RGD kodified liposomes as  multistage rocket against cancer[J].   [38]  CHENG X, LI D P, SUN M, et al. Co-delivery of DOX and PDTC
                 Frontiers in Pharmacology, 2022, 12: 803304.      by pH-sensitive nanoparticles to  overcome  multidrug resistance in
            [18]  YUAN Z T, YUAN Y X, HAN L, et al. Bufalin-loaded vitamin E   breast cancer[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181:
                 succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS   185-197.
                 mixed  micelles demonstrated improved antitumor activity against   [39]  SHAO M, CHANG C, LIU Z H, et al. Polydopamine coated hollow
                 drug-resistant colon cancer[J]. International Journal of Nanomedicine,   mesoporous silica nanoparticles as pH-sensitive nanocarriers  for
                 2018, 13: 7533-7548.                              overcoming multidrug resistance[J]. Colloids and  Surfaces  B:
            [19]  JIANG  W,  WANG J L,  YANG J B,  et al. Acidity-triggered  TAT-   Biointerfaces, 2019, 183: 110427.
                 presenting  nanocarriers augment tumor retention and nuclear   [40]  BENITO E, ROMERO-AZOGIL L, GALLBIS E, et al. Structurally
                 translocation of drugs[J]. Nano Research, 2018, 11(10): 5716-5734.   simple redox polymersomes for doxorubicin  delivery[J]. European
            [20]  LIU D K, CHEN Y, WANG Q,  et al. Tailored protein-conjugated   Polymer Journal, 2020, 137: 109952.
                 DNA nanoplatform for synergistic cancer therapy[J]. Journal  of   [41]  WANG H  B, LI  Y, ZHANG M Z,  et al. Redox-activatable ATP-
                 Controlled Release, 2022, 346: 250-259.           depleting micelles with  dual modulation  characteristics  for  multidrug-
            [21]  BEAK J S, CHO C W. A multifunctional lipid nanoparticle for co-   resistant cancer therapy[J]. Advanced  Healthcare Materials, 2017,
                 delivery of paclitaxel and curcumin for targeted delivery and enhanced   6(8): 1601293.
                 cytotoxicity in multidrug resistant breast cancer cells[J]. Oncotarget,   [42]  LIN J, ZHAO  C Y, LIU  C J,  et al. Redox-responsive F127-folate/
                 2017, 8(18): 30369-30382.                         F127-disulfide bond-d-α-tocopheryl polyethylene glycol 1000 succinate/
            [22]  ZHONG P,  CHEN X H, GUO R S,  et al. Folic acid-modified   P123 mixed micelles loaded with  paclitaxel for  the reversal  of
                 nanoerythrocyte for codelivery of paclitaxel and tariquidar to overcome   multidrug resistance in tumors[J]. International Journal of Nanomedicine,
                 breast cancer multidrug resistance[J]. Molecular Pharmaceutics, 2020,   2018, 13: 805- 830.
                 17(4): 1114-1126.
            [23]  WANG S H, TAN X Y, ZHOU Q, et al. Co-delivery of doxorubicin   [43]  MO L T, ZHAO Z L, HU X X, et al. Smart nanodrug with nuclear
                                                                   localization  sequences in the  presence of MMP-2 to  overcome
                 and SIS3 by folate-targeted polymeric micelles for overcoming tumor
                 multidrug resistance[J]. Drug Delivery and  Translational Research,   biobarriers and drug resistance[J]. Chemistry-A European Journal,
                 2022, 12(1): 167-179.                             2019, 25(8): 1895-1900.
            [24]  PIROLLO K F, NEMUNAITIS J, LEUNG P K,  et al. Safety and   [44]  ISSELS R D. Hyperthermia adds to chemotherapy[J]. European
                 efficacy in advanced solid  tumors of a targeted  nanocomplex   Journal of Cancer, 2008, 44(17): 2546-2554.
                 carrying the p53 gene used in combination with docetaxel: A phase   [45]  GAO H Y, BAI Y, CHEN L J, et al. Self-assembly nanoparticles for
                 1b study[J]. Molecular Therapy, 2016, 24(9): 1697-1706.   overcoming multidrug resistance and imaging-guided chemo-
            [25]  SCHEEREN  L E,  NOGUEIRA-LIBRCLOTTO D R, MATHES  D,   photothermal synergistic cancer therapy[J]. International Journal of
                 et al. Multifunctional PLGA nanoparticles combining transferrin-   Nanomedicine, 2020, 15: 809-819.
                 targetability and pH-stimuli sensitivity enhanced doxorubicin intracellular   [46]  YU Y N,  ZHANG Z P, WANG  Y,  et al.  A new NIR-triggered
                 delivery and in vitro antineoplastic activity in MDR tumor cells[J].   doxorubicin and photosensitizer indocyanine green co-delivery system for
                 Toxicology in Vitro, 2021, 75: 105192.            enhanced multidrug resistant cancer treatment through simultaneous
            [26]  ZOU W T,  SARISOZEN C,  TORCHILIN V  P. The reversal  of   chemo/photothermal/photodynamic therapy[J]. Acta  Biomaterialia,
                 multidrug resistance in ovarian carcinoma cells by co-application of   2017, 59: 170-180.
                 tariquidar and paclitaxel in transferrin-targeted polymeric micelles[J].   [47]  PUIU R A, BALAURE P C, CONSTANTINES E, et al. Anti-cancer
                 Journal of Drug Targeting, 2017, 25(3): 225-234.   nanopowders and  MAPLE-fabricated thin films based on SPIONs
            [27]  LIU J, YE Z L, XIANG M X, et al. Functional extracellular vesicles   surface modified  with paclitaxel  loaded  β-cyclodextrin[J].
                 engineered with lipid-grafted hyaluronic acid effectively reverse   Pharmaceutics, 2021, 13(9): 1356.
                 cancer drug resistance[J]. Biomaterials, 2019, 223: 119475.   [48]  ZHAN W H, CAI X X, LI H R, et al. GMBP1-conjugated manganese
            [28]  ZHANG J, SONG J, LIANG X,  et al. Hyaluronic acid-modified   oxide nanoplates for in vivo monitoring of gastric cancer MDR using
                 cationic nanoparticles overcome  enzyme CYP1B1-mediated breast   magnetic resonance imaging[J]. RSC Advances, 2020, 10(23):
                 cancer multidrug resistance[J]. Nanomedicine, 2019, 14(4): 447-464.   13687- 13695.
            [29]  WANG X J, XIONG T D, CUI M, et al. A novel targeted co-delivery   [49]  LI J C, ZHANG W W, GAO Y, et al. Near-infrared light and magnetic
                 nanosystem for enhanced ovarian cancer treatment via multidrug   field dual-responsive porous silicon-based nanocarriers to overcome
                 resistance reversion and mTOR-mediated signaling pathway[J].   multidrug resistance in breast cancer cells with enhanced efficiency
                 Journal of Nanobiotechnology, 2021, 19(1): 1-18.   [J]. Journal of Materials Chemistry B, 2020, 8(3): 546-557.
   74   75   76   77   78   79   80   81   82   83   84