Page 79 - 《精细化工》2023年第5期
P. 79
第 5 期 葛界芳,等: 抑制癌症治疗多药耐药性的纳米药物递送体系 ·999·
Drug Resistance Updates, 2019, 46: 100645. [30] ZHU Y Q, FEIJEN F, ZHONG Z Y. Dual-targeted nanomedicines for
[9] LEE W K, MAA M, QUACH A, et al. Dependence of ABCB1 enhanced tumor treatment[J]. Nano Today, 2018, 18: 65-85.
transporter expression and function on distinct sphingolipids generated [31] CHAN M S, LIU L S, LEUNG H M, et al. Cancer-cell-specific
by ceramide synthases-2 and -6 in chemoresistant renal cancer[J]. mitochondria-targeted drug delivery by dual-ligand-functionalized
The Journal of Biological Chemistry, 2021, 298(2): 101492. nanodiamonds circumvent drug resistance[J]. ACS Applied Materials
[10] KARIN H, ANDRE M, DIPITA B G, et al. The role of p53 in cancer & Interfaces, 2017, 9(13): 11780-11789.
drug resistance and targeted chemotherapy[J]. Oncotarget, 2017, [32] YAO Q, CHOI J H, DAI Z, et al. Improving tumor specificity and
8(5): 8921-8946. anticancer activity of dasatinib by dual-targeted polymeric micelles[J].
[11] AMAWI H, SIM H M, TIWARI A K, et al. ABC transporter- ACS Applied Materials & Interfaces, 2017, 9(42): 36642-36654.
mediated multidrug-resistant cancer[J]. Advances in Experimental [33] WANG R H, BAI J, DENG J, et al. TAT-modified gold nanoparticle
Mdicine and Biology, 2019, 1141: 549-580. carrier with enhanced anticancer activity and size effect on
[12] LEE C, KIM M, KIM D W, et al. Acquired Resistance Mechanism of overcoming multidrug resistance[J]. ACS Applied Materials &
EGFR kinase domain duplication to EGFR TKIs in non-small cell Interfaces, 2017, 9(7): 5828-5837.
lung cancer[J]. Cancer Research and Treatment, 2022. 54(1): 140-149. [34] YU D H, LIU Y R, LUAN X, et al. IF7-conjugated nanoparticles
[13] LHEUREUX S, MIRZA M, COLEMAN R. The DNA repair pathway target Annexin 1 of tumor vasculature against P-gp mediated multidrug
as a target for novel drugs in gynecologic cancers[J]. Journal of Clinical resistance[J]. Bioconjugate Chemistry, 2015, 26(8): 1702-1712.
Oncology: Official Journal of the American Society of Clinical [35] QIN Y, ZHANG Z M, HUANG C L, et al. Folate-targeted redox-
Oncology, 2019, 37(27): 2449-2459. responsive polymersomes loaded with chemotherapeutic drugs and
[14] ISMAIL M M F, FARRAG A M, HARRAS M F, et al. Apoptosis: A tariquidar to overcome drug resistance[J]. Journal of Biomedical
target for anticancer therapy with novel cyanopyridines[J]. Nanotechnology, 2018, 14(10): 1705-1718.
Bioorganic Chemistry, 2020, 94: 103481. [36] GUO F Y, YU N, JIAO Y L, et al. Star polyester-based folate acid-
[15] PRIETO-VILA M, TAKAHASHI R, USUBA W, et al. Drug resistance targeting nanoparticles for doxorubicin and curcumin co-delivery to
driven by cancer stem cells and their niche[J]. International Journal combat multidrug-resistant breast cancer[J]. Drug Delivery, 2021,
of Molecular Sciences, 2017, 18(12): 2574. 28(1): 1709-1721.
[16] MEHRAJ U, DAR A H, WANI N A, et al. Tumor microenvironment [37] SHOME R, GHOSH S S. Transferrin coated d-penicillamine-Au-Cu
promotes breast cancer chemoresistance[J]. Cancer Chemotherapy nanocluster PLGA nanocomposite reverses hypoxia-induced EMT
and Pharmacology, 2021, 87(2): 1-12. and MDR of triple-negative breast cancers[J]. ACS Applied Bio
[17] SHEIKH A, ALHAKAMY N A, MD S, et al. Recent progress of Materials, 2021, 4(6): 5033-5048.
RGD kodified liposomes as multistage rocket against cancer[J]. [38] CHENG X, LI D P, SUN M, et al. Co-delivery of DOX and PDTC
Frontiers in Pharmacology, 2022, 12: 803304. by pH-sensitive nanoparticles to overcome multidrug resistance in
[18] YUAN Z T, YUAN Y X, HAN L, et al. Bufalin-loaded vitamin E breast cancer[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181:
succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS 185-197.
mixed micelles demonstrated improved antitumor activity against [39] SHAO M, CHANG C, LIU Z H, et al. Polydopamine coated hollow
drug-resistant colon cancer[J]. International Journal of Nanomedicine, mesoporous silica nanoparticles as pH-sensitive nanocarriers for
2018, 13: 7533-7548. overcoming multidrug resistance[J]. Colloids and Surfaces B:
[19] JIANG W, WANG J L, YANG J B, et al. Acidity-triggered TAT- Biointerfaces, 2019, 183: 110427.
presenting nanocarriers augment tumor retention and nuclear [40] BENITO E, ROMERO-AZOGIL L, GALLBIS E, et al. Structurally
translocation of drugs[J]. Nano Research, 2018, 11(10): 5716-5734. simple redox polymersomes for doxorubicin delivery[J]. European
[20] LIU D K, CHEN Y, WANG Q, et al. Tailored protein-conjugated Polymer Journal, 2020, 137: 109952.
DNA nanoplatform for synergistic cancer therapy[J]. Journal of [41] WANG H B, LI Y, ZHANG M Z, et al. Redox-activatable ATP-
Controlled Release, 2022, 346: 250-259. depleting micelles with dual modulation characteristics for multidrug-
[21] BEAK J S, CHO C W. A multifunctional lipid nanoparticle for co- resistant cancer therapy[J]. Advanced Healthcare Materials, 2017,
delivery of paclitaxel and curcumin for targeted delivery and enhanced 6(8): 1601293.
cytotoxicity in multidrug resistant breast cancer cells[J]. Oncotarget, [42] LIN J, ZHAO C Y, LIU C J, et al. Redox-responsive F127-folate/
2017, 8(18): 30369-30382. F127-disulfide bond-d-α-tocopheryl polyethylene glycol 1000 succinate/
[22] ZHONG P, CHEN X H, GUO R S, et al. Folic acid-modified P123 mixed micelles loaded with paclitaxel for the reversal of
nanoerythrocyte for codelivery of paclitaxel and tariquidar to overcome multidrug resistance in tumors[J]. International Journal of Nanomedicine,
breast cancer multidrug resistance[J]. Molecular Pharmaceutics, 2020, 2018, 13: 805- 830.
17(4): 1114-1126.
[23] WANG S H, TAN X Y, ZHOU Q, et al. Co-delivery of doxorubicin [43] MO L T, ZHAO Z L, HU X X, et al. Smart nanodrug with nuclear
localization sequences in the presence of MMP-2 to overcome
and SIS3 by folate-targeted polymeric micelles for overcoming tumor
multidrug resistance[J]. Drug Delivery and Translational Research, biobarriers and drug resistance[J]. Chemistry-A European Journal,
2022, 12(1): 167-179. 2019, 25(8): 1895-1900.
[24] PIROLLO K F, NEMUNAITIS J, LEUNG P K, et al. Safety and [44] ISSELS R D. Hyperthermia adds to chemotherapy[J]. European
efficacy in advanced solid tumors of a targeted nanocomplex Journal of Cancer, 2008, 44(17): 2546-2554.
carrying the p53 gene used in combination with docetaxel: A phase [45] GAO H Y, BAI Y, CHEN L J, et al. Self-assembly nanoparticles for
1b study[J]. Molecular Therapy, 2016, 24(9): 1697-1706. overcoming multidrug resistance and imaging-guided chemo-
[25] SCHEEREN L E, NOGUEIRA-LIBRCLOTTO D R, MATHES D, photothermal synergistic cancer therapy[J]. International Journal of
et al. Multifunctional PLGA nanoparticles combining transferrin- Nanomedicine, 2020, 15: 809-819.
targetability and pH-stimuli sensitivity enhanced doxorubicin intracellular [46] YU Y N, ZHANG Z P, WANG Y, et al. A new NIR-triggered
delivery and in vitro antineoplastic activity in MDR tumor cells[J]. doxorubicin and photosensitizer indocyanine green co-delivery system for
Toxicology in Vitro, 2021, 75: 105192. enhanced multidrug resistant cancer treatment through simultaneous
[26] ZOU W T, SARISOZEN C, TORCHILIN V P. The reversal of chemo/photothermal/photodynamic therapy[J]. Acta Biomaterialia,
multidrug resistance in ovarian carcinoma cells by co-application of 2017, 59: 170-180.
tariquidar and paclitaxel in transferrin-targeted polymeric micelles[J]. [47] PUIU R A, BALAURE P C, CONSTANTINES E, et al. Anti-cancer
Journal of Drug Targeting, 2017, 25(3): 225-234. nanopowders and MAPLE-fabricated thin films based on SPIONs
[27] LIU J, YE Z L, XIANG M X, et al. Functional extracellular vesicles surface modified with paclitaxel loaded β-cyclodextrin[J].
engineered with lipid-grafted hyaluronic acid effectively reverse Pharmaceutics, 2021, 13(9): 1356.
cancer drug resistance[J]. Biomaterials, 2019, 223: 119475. [48] ZHAN W H, CAI X X, LI H R, et al. GMBP1-conjugated manganese
[28] ZHANG J, SONG J, LIANG X, et al. Hyaluronic acid-modified oxide nanoplates for in vivo monitoring of gastric cancer MDR using
cationic nanoparticles overcome enzyme CYP1B1-mediated breast magnetic resonance imaging[J]. RSC Advances, 2020, 10(23):
cancer multidrug resistance[J]. Nanomedicine, 2019, 14(4): 447-464. 13687- 13695.
[29] WANG X J, XIONG T D, CUI M, et al. A novel targeted co-delivery [49] LI J C, ZHANG W W, GAO Y, et al. Near-infrared light and magnetic
nanosystem for enhanced ovarian cancer treatment via multidrug field dual-responsive porous silicon-based nanocarriers to overcome
resistance reversion and mTOR-mediated signaling pathway[J]. multidrug resistance in breast cancer cells with enhanced efficiency
Journal of Nanobiotechnology, 2021, 19(1): 1-18. [J]. Journal of Materials Chemistry B, 2020, 8(3): 546-557.