Page 143 - 《精细化工》2023年第6期
P. 143
第 6 期 蔡华娟,等: 基于酚酞结构高可溶性聚酰亚胺的合成与性能 ·1293·
介电常数。此外,该系列聚酰亚胺还具有较高的玻 13(5): 758.
璃化转变温度和力学性能。制备的聚酰亚胺在微电 [10] VANHERCK K, KOECKELBERGHS G, VANKELECOM I F J.
Crosslinking polyimides for membrane applications: A review[J].
子和光电领域具有潜在的应用价值。 Progress in Polymer Science, 2013, 38(6): 874-896.
[11] JIA M C, LI Y J, HE C Q, et al. Soluble perfluorocyclobutyl aryl
参考文献: ether-based polyimide for high-performance dielectric material[J].
ACS Applied Materials & Interfaces, 2016, 8(39): 26352-26358.
[1] TANG N, ZHENG Y B, YUAN M M. High-performance polyimide-
based water-solid triboelectric nanogenerator for hydropower [12] CHOI W T, KIM D W, JEONG Y T, et al. Preparation of colorless
harvesting[J]. ACS Applied Materials & Interfaces, 2021, 13(27): polyimide hybrid films with enhanced optical, chemical and thermal
32106-32114. resistance[J]. Molecular Crystals and Liquid Crystals, 2019, 679(1):
87-94.
[2] QU L J, TANG L S, BEI R X, et al. Flexible multifunctional aromatic [13] LIU Y Y, WANG Y K, WU D Y. Synthetic strategies for highly
polyimide film: Highly efficient photoluminescence, resistive transparent and colorless polyimide film[J]. Journal of Applied
switching characteristic, and electroluminescence[J]. ACS Applied Polymer Science, 2022, 139(28): e52604.
Materials & Interfaces, 2018, 10(14): 11430-11435. [14] WU Q, MA X R, ZHENG F, et al. High performance transparent
[3] YERZHANKYZY A, WANG Y G, GHANEM B S, et al. Gas separation polyimides by controlling steric hindrance of methyl side groups[J].
performance of solid-state in-situ thermally crosslinked 6FDA-based European Polymer Journal, 2019, 120: 109235.
polyimides[J]. Journal of Membrane Science, 2022, 641: 119885. [15] CHEN W X, ZHOU Z, YANG T T, et al. Synthesis and properties of
[4] TSAI M H, WHANG W T. Low dielectric polyimide/poly highly organosoluble and low dielectric constant polyimides
(silsesquioxane)-like nanocomposite material[J]. Polymer, 2001, containing non-polar bulky triphenyl methane moiety[J]. Reactive &
42(9): 4197-4207. Functional Polymers, 2016, 108: 71-77.
[5] WANG X W (王献伟), KE H J (柯红军) YUAN H (袁航), et al. [16] WALSH C J, MANDAL B K. A new class of aromatic dianhydrides
High temperature resistant and soluble polyimide resins and their for thermostable polyimides[J]. Chemistry of Materials, 2001, 13(8):
composites[J]. Chemical Journal of Chinese Universities (高等学校 2472-2475.
化学学报), 2021, 42(6): 2041-2048. [17] WANG C Y, JIANG C R, YU B, et al. Highly soluble polyimides
[6] SHEN R, LIU L, CAO Y, et al. Biomass modified boron containing di-tert-butylbenzene and dimethyl groups with good gas
nitride/polyimide hybrid aerogel supported phase change composites separation properties and optical transparency[J]. Chinese Journal of
with superior energy storage capacity and improved flame retardancy Polymer Science, 2020, 38(7): 759-768.
for solar-thermal energy storage[J]. Solar Energy, 2022, 242: 287-297. [18] ZHENG H, WANG C Y, MA Y, et al. High thermal stability and low
[7] HU X F, MU H L, MIAO J, et al. Synthesis and gas separation dielectric constant of soluble polyimides containing asymmetric
performance of intrinsically microporous polyimides derived from bulky pendant groups[J]. Journal of Macromolecular Science Part
sterically hindered binaphthalenetetracarboxylic dianhydride[J]. A-Pure and Applied Chemistry, 2021, 58(12): 880-889.
Polymer Chemistry, 2020, 11(25): 4172-4179. [19] MA S Q, WANG S L, JIN S Z, et al. Construction of high-
[8] QIU G R, MA W S, WU L. Low dielectric constant polyimide performance, high-temperature shape memory polyimides bearing
mixtures fabricated by polyimide matrix and polyimide microsphere pyridine and trifluoromethyl group[J]. Polymer, 2020, 210(5): 122972.
fillers[J]. Polymer International, 2020, 69(5): 485-491. [20] YUAN C Y, SUN Z, WANG Y H. Study on the effect of different
[9] ZHU Y S, XIA P, LIU J H, et al. Polyimide-based high-performance amounts of hydroxyl and tert-butyl substituted triphenylpyridine
film bulk acoustic resonator humidity sensor and its application in units on the properties of polyimide[J]. Journal of Polymer Research,
real-time human respiration monitoring[J]. Micromachines, 2022, 2020, 193: 27.
(上接第 1224 页) water production from desert air[J]. Science Advances, 2018, 4(6):
[62] XU J X, LI T X, YAN T S, et al. Ultrahigh solar-driven atmospheric eaat3198.
water production enabled by scalable rapid-cycling water harvester [67] HAECHLER I, PARK H, SCHNOERING G, et al. Exploiting
with vertically aligned nanocomposite sorbent[J]. Energy & radiative cooling for uninterrupted 24-hour water harvesting from the
Environmental Science, 2021, 14(11): 5979-5994. atmosphere[J]. Science Advances, 2021, 7(26): eabf3978.
[63] LI Q Q, YING Y F, TAO Y L, et al. Assemblable carbon fiber/ [68] WANG W W, PAN Q W, XING Z L, et al. Viability of a practical
metal-organic framework monoliths for energy-efficient atmospheric multicyclic sorption-based water harvester with improved water
water harvesting[J]. Industrial & Engineering Chemistry Research, yield[J]. Water Res, 2022, 211: 118029.
2022, 61(3): 1344-1354. [69] ZHOU X Y, ZHANG P P, ZHAO F, et al. Super moisture absorbent
[64] ALMASSAD H A, ABAZA R I, SIWWAN L, et al. Environmentally gels for sustainable agriculture via atmospheric water irrigation[J].
adaptive MOF-based device enables continuous self-optimizing ACS Materials Letters, 2020, 2(11): 1419-1422.
atmospheric water harvesting[J]. Nature Communications, 2022, [70] LI R Y, WU M C, ALEID S, et al. An integrated solar-driven system
13(1): 4873. produces electricity with fresh water and crops in arid regions[J].
[65] ZHANG S, CHI M C, MO J L, et al. Bioinspired asymmetric Cell Reports Physical Science, 2022, 3(3): 100781.
amphiphilic surface for triboelectric enhanced efficient water [71] YANG J C, ZHANG X P, QU H, et al. A moisture-hungry copper
harvesting[J]. Nature Communications, 2022, 13(1): 4168. complex harvesting air moisture for potable water and autonomous
[66] FATHIEH F, KALMUTZKI M J, KAPUSTIN E A, et al. Practical urban agriculture[J]. Adv Mater, 2020, 32(39): e2002936.