Page 143 - 《精细化工》2023年第6期
P. 143

第 6 期                    蔡华娟,等:  基于酚酞结构高可溶性聚酰亚胺的合成与性能                                   ·1293·


            介电常数。此外,该系列聚酰亚胺还具有较高的玻                                 13(5): 758.
            璃化转变温度和力学性能。制备的聚酰亚胺在微电                             [10]  VANHERCK K,  KOECKELBERGHS G, VANKELECOM I F J.
                                                                   Crosslinking  polyimides for membrane applications: A review[J].
            子和光电领域具有潜在的应用价值。                                       Progress in Polymer Science, 2013, 38(6): 874-896.
                                                               [11]  JIA M C, LI Y J, HE C Q,  et al. Soluble perfluorocyclobutyl aryl
            参考文献:                                                  ether-based polyimide for high-performance dielectric material[J].
                                                                   ACS Applied Materials & Interfaces, 2016, 8(39): 26352-26358.
            [1]   TANG N, ZHENG Y B, YUAN M M. High-performance polyimide-
                 based water-solid triboelectric nanogenerator for hydropower   [12]  CHOI W T, KIM D W, JEONG Y T, et al. Preparation of colorless
                 harvesting[J]. ACS Applied Materials & Interfaces, 2021, 13(27):   polyimide hybrid films with enhanced optical, chemical and thermal
                 32106-32114.                                      resistance[J]. Molecular Crystals and Liquid Crystals, 2019, 679(1):
                                                                   87-94.
            [2]   QU L J, TANG L S, BEI R X, et al. Flexible multifunctional aromatic   [13]  LIU Y  Y, WANG Y K, WU D  Y. Synthetic strategies  for  highly
                 polyimide film: Highly efficient  photoluminescence, resistive   transparent and colorless polyimide  film[J]. Journal of Applied
                 switching characteristic, and electroluminescence[J].  ACS Applied   Polymer Science, 2022, 139(28): e52604.
                 Materials & Interfaces, 2018, 10(14): 11430-11435.   [14]  WU Q, MA X  R,  ZHENG F,  et al. High  performance transparent
            [3]   YERZHANKYZY A, WANG Y G, GHANEM B S, et al. Gas separation   polyimides by controlling steric hindrance of methyl side groups[J].
                 performance of solid-state in-situ thermally crosslinked 6FDA-based   European Polymer Journal, 2019, 120: 109235.
                 polyimides[J]. Journal of Membrane Science, 2022, 641: 119885.   [15]  CHEN W X, ZHOU Z, YANG T T, et al. Synthesis and properties of
            [4]   TSAI M H, WHANG W T.  Low dielectric polyimide/poly   highly organosoluble and  low dielectric constant polyimides
                 (silsesquioxane)-like nanocomposite  material[J]. Polymer, 2001,   containing non-polar bulky triphenyl methane moiety[J]. Reactive &
                 42(9): 4197-4207.                                 Functional Polymers, 2016, 108: 71-77.
            [5]   WANG X  W (王献伟), KE H J (柯红军) YUAN H (袁航),  et al.   [16]  WALSH C J, MANDAL B K. A new class of aromatic dianhydrides
                 High temperature resistant and soluble polyimide resins and their   for thermostable polyimides[J]. Chemistry of Materials, 2001, 13(8):
                 composites[J]. Chemical Journal of Chinese Universities (高等学校  2472-2475.
                 化学学报), 2021, 42(6): 2041-2048.                [17]  WANG C Y, JIANG C R, YU B, et al. Highly soluble polyimides
            [6]   SHEN R,  LIU L, CAO  Y,  et al. Biomass  modified boron   containing di-tert-butylbenzene and dimethyl groups with good gas
                 nitride/polyimide hybrid aerogel supported phase change composites   separation properties and optical transparency[J]. Chinese Journal of
                 with superior energy storage capacity and improved flame retardancy   Polymer Science, 2020, 38(7): 759-768.
                 for solar-thermal energy storage[J]. Solar Energy, 2022, 242: 287-297.   [18]  ZHENG H, WANG C Y, MA Y, et al. High thermal stability and low
            [7]   HU X F, MU H L, MIAO J,  et al.  Synthesis and gas  separation   dielectric constant of soluble polyimides containing  asymmetric
                 performance of intrinsically  microporous polyimides derived from   bulky pendant groups[J]. Journal of Macromolecular Science Part
                 sterically hindered  binaphthalenetetracarboxylic dianhydride[J].   A-Pure and Applied Chemistry, 2021, 58(12): 880-889.
                 Polymer Chemistry, 2020, 11(25): 4172-4179.   [19]  MA S Q, WANG S L, JIN S Z,  et al. Construction of high-
            [8]   QIU G R, MA W S, WU L. Low  dielectric constant  polyimide   performance, high-temperature shape  memory polyimides bearing
                 mixtures fabricated by polyimide matrix and polyimide microsphere   pyridine and trifluoromethyl group[J]. Polymer, 2020, 210(5): 122972.
                 fillers[J]. Polymer International, 2020, 69(5): 485-491.   [20]  YUAN C Y, SUN Z, WANG Y H. Study on the effect of different
            [9]   ZHU Y S, XIA P, LIU J H, et al. Polyimide-based high-performance   amounts of hydroxyl and  tert-butyl substituted triphenylpyridine
                 film bulk acoustic resonator humidity sensor and its application in   units on the properties of polyimide[J]. Journal of Polymer Research,
                 real-time human respiration monitoring[J]. Micromachines, 2022,     2020, 193: 27.





            (上接第 1224 页)                                           water production from desert air[J]. Science Advances, 2018, 4(6):
            [62]  XU J X, LI T X, YAN T S, et al. Ultrahigh solar-driven atmospheric   eaat3198.
                 water production enabled by scalable rapid-cycling water harvester   [67]  HAECHLER I, PARK H, SCHNOERING G, et  al. Exploiting
                 with vertically aligned  nanocomposite sorbent[J]. Energy &   radiative cooling for uninterrupted 24-hour water harvesting from the
                 Environmental Science, 2021, 14(11): 5979-5994.   atmosphere[J]. Science Advances, 2021, 7(26): eabf3978.
            [63]  LI Q Q,  YING Y  F, TAO  Y L, et  al. Assemblable carbon fiber/   [68]  WANG W W, PAN Q W, XING Z L, et al. Viability of a practical
                 metal-organic framework monoliths for energy-efficient atmospheric   multicyclic sorption-based water harvester with improved water
                 water harvesting[J]. Industrial & Engineering Chemistry Research,   yield[J]. Water Res, 2022, 211: 118029.
                 2022, 61(3): 1344-1354.                       [69]  ZHOU X Y, ZHANG P P, ZHAO F, et al. Super moisture absorbent
            [64]  ALMASSAD H A, ABAZA R I, SIWWAN L, et al. Environmentally   gels for sustainable agriculture  via atmospheric water irrigation[J].
                 adaptive MOF-based device enables continuous  self-optimizing   ACS Materials Letters, 2020, 2(11): 1419-1422.
                 atmospheric water harvesting[J]. Nature Communications, 2022,   [70]  LI R Y, WU M C, ALEID S, et al. An integrated solar-driven system
                 13(1): 4873.                                      produces electricity with fresh water and crops in arid regions[J].
            [65]  ZHANG S, CHI  M C, MO J L, et  al. Bioinspired asymmetric   Cell Reports Physical Science, 2022, 3(3): 100781.
                 amphiphilic surface for triboelectric enhanced efficient water   [71]  YANG J C, ZHANG X P, QU H, et al. A moisture-hungry copper
                 harvesting[J]. Nature Communications, 2022, 13(1): 4168.   complex harvesting air moisture for potable water and autonomous
            [66]  FATHIEH F, KALMUTZKI M J, KAPUSTIN E A, et al. Practical   urban agriculture[J]. Adv Mater, 2020, 32(39): e2002936.
   138   139   140   141   142   143   144   145   146   147   148