Page 218 - 《精细化工》2023年第8期
P. 218

·1832·                            精细化工   FINE CHEMICALS                                 第 40 卷

                                                                            2+
                                                                      2+
                 由图 8 和表 2 可以看出,准一级动力学模型不能                     膜对 Cu 、Pb 和 Cd     2+   3 种金属离子也表现出较强
            很好地拟合实验数据,相关系数均小于 0.99。而准二                         的吸附能力,在 50 min 时,复合膜的吸附量接近平
                                                    2+
            级动力学模型与实验数据拟合度较高,对 Cu 、Pb                    2+    衡吸附量。本文膜的制备方法简单易行,且所制备
                 2+
            和 Cd 的相关系数值分别为 0.9999、0.9963、0.9993。               膜具有快速高效的过滤性能,为生物材料在膜过滤
            根据准二级动力学模型计算得到的吸附量(q e,cal )与                      领域的开发提供了思路。
            实验吸附量(q e,exp)非常接近,而运用准一级动力学
                                                               参考文献:
            模型计算的吸附量与实验吸附量差距较大。因此,与
                                                               [1]   LI D, TIAN X, WANG Z, et al. Multifunctional adsorbent based on
            准一级动力学模型相比,准二级动力学模型更适合描                                metal-organic framework modified bacterial cellulose/chitosan composite
                                                                   aerogel for high efficient removal of  heavy  metal ion and organic
            述该复合膜吸附金属离子的动力学行为,这说明 CS                               pollutant[J]. Chemical Engineering Journal, 2020, 383: 123-127.
            吸附金属离子是复杂的化学吸附过程。                                  [2]   MAHMOODI  N M, TAGHIZADEH  M, TAGHIZADEH  A,  et al.
                                                                   Bio-based magnetic  metal-organic framework nanocomposite:
                                                                   Ultrasound-assisted synthesis anpollutant (heavy metal and dye)
                     表 2   动力学模型参数拟合实验数据                           removal from aqueous media[J]. Applied Surface Science, 2019, 480:
            Table 2    Result of parameters of the kinetic models fitted   288-299.
                    by experimental data                       [3]   LIU Q, LI Y, CHEN  H,  et al. Superior adsorption capacity of
                                                                   functionalised straw adsorbent for dyes  and heavy-metal ions[J].
                                                       2+
             动力学模型       参数         Cu 2+    Pb  2+  Cd            Journal of Hazardous Materials, 2020, 382: 121040.
                       q e, exp /(mg/g)  165.00  248.54  307.83  [4]   PENG H, GUO J. Removal of chromium from wastewater by
                                                                   membrane filtration, chemical precipitation, ion exchange, adsorption
                      q e1, cal /(mg/g)  13.77  359.17  101.33
              准一级            –1                                    electrocoagulation,  electrochemical  reduction,  electrodialysis,
              动力学       k 1/min    0.0785   0.1291   0.0789        electrodeionization, photocatalysis and nanotechnology: A review[J].
                           2                                       Environmental Chemistry Letters, 2020, 18: 2055-2068.
                          R 1      0.9086   0.9248   0.9772
                                                               [5]   ZHANG Y, DUAN X. Chemical precipitation of heavy metals from
                       q e2, cal/(mg/g)  166.39  238.66  318.47
              准二级                                                  wastewater by using the synthetical magnesium hydroxy carbonate
              动力学     k 2/[g/(mg·min)]   0.0124  0.0005  0.0023    [J]. Water Science & Technology, 2020, 81(6): 1130-1136.
                           2                                   [6]   XUE J, PELDSZUS S, DYKE  M, et  al. Removal of polystyrene
                          R 2      0.9999   0.9963   0.9993
                                                                   microplastic spheres by alum-based coagulation-flocculation-sedimentation
                                                                   (CFS) treatment of surface waters[J]. Chemical Engineering Journal,
            2.8   吸附机理                                             2021, 422: 130023.
                 CS/PLA 复合膜之所以能够表现出对三类目标                       [7]   SARKAR S, PONCE  N  T, BANERJEE  A, et  al. Green polymeric
                                                                   nanomaterials for the photocatalytic degradation of dyes:  A
            物(酸性染料、蛋白质和金属离子)均具有良好的                                 review[J]. Environmental Chemistry Letters, 2020, 18(2): 131-145.
                                                               [8]   WANG J H (王佳豪), TIAN T (田湉), LI J C (李家成),  et al.
            吸附能力,主要依赖于 CS 分子结构中的—OH 和—                             Research progress  on removal of antibiotic-resistant  bacteria and
            NH 2 基团对特定目标物的相互作用。CS 对酸性染料                            resistant genes in water by photochemical AOPs[J]. Fine Chemicals
                                                                   (精细化工), 2021, 38(5): 550-560
            的吸附是利用 CS 中大量的—NH 2 和酸性染料中的                        [9]   WERTH  C J, YAN  C,  TROUTMAN J P. Factors impeding
            阴离子键合作用;CS 对蛋白质的吸附,一方面是                                replacement of ion exchange with (electro) catalytic treatment for
                                                                   nitrate removal from drinking water[J]. American Chemical Society,
            CS 和蛋白质分子之间形成氢键,另一方面是 CS 和                             2020, 1(1): 6-20.
            蛋白质分子之间带相反的电荷产生了静电吸附作                              [10]  DIXIT F, MOHSENI M,  BARBEAU B,  et al. PFOA and PFOS
                                                                   removal by ion exchange for water reuse and drinking applications:
                                                                   Role of  organic matter characteristics[J]. Environmental Science:
            用;CS 对金属离子的吸附则是利用 CS 中的—NH 2
                                                                   Water Research & Technology, 2019, 5(10): 1782-1795.
            和金属离子通过配位键结合,形成稳定的螯合物。                             [11]  RONG N, CHEN C, OUYANG K, et al. Adsorption characteristics of
                                                                   directional cellulose nanofiber/chitosan/montmorillonite aerogel as
            3   结论                                                 adsorbent for wastewater treatment[J]. Separation and  Purification
                                                                   Technology, 2021, 274(1): 119120.
                                                               [12]  ALMASIAN A, GIYAHI M, GH C F, et al. Removal of heavy metal
                 本文制备了一种 CS/PLA 环境友好型复合膜材                          ions by modified PAN/PANI-nylon core-shell nanofibers membrane:
                                                                   Filtration performance,  antifouling and regeneration behavior[J].
            料,由于 PLA 本身并没有用于吸附的活性点位,对                              Chemical Engineering Journal, 2018, 351: 1166-1178.
            污染物没有吸附作用,因此,本实验通过静电纺的                             [13]  LIU Z J (刘正江), GUO S S (郭沙沙), ZHANG Y T (张云亭), et al.
                                                                   Research progress on  the application  of composite modified
            方法使制备的 PLA 纤维具有疏松多孔的结构,该结                              montmorillonite in sewage treatment[J]. Fine Chemicals (精细化工),
            构有利于水分子的快速流通,从而提高膜的渗透通                                 2022, 39(5): 86-93.
                                                               [14]  MONDAL S, DAS S, GAUTAM U K. Defect-rich, negatively-
            量。以 PLA 纤维膜为基底层,利用刮涂法在纤维膜                              charged SnS 2 nanosheets for efficient photocatalytic Cr(Ⅵ) reduction
            层上形成致密的 CS 阻隔层,不仅增强了膜的力学                               and organic dye  adsorption in water[J]. Journal of Colloid and
                                                                   Interface Science, 2021, 603: 110-119.
            性能,更重要的是提高了复合膜对不同目标物的过                             [15]  KHANDEGAR V, KAUR P J, CHANANA P. Chitosan and graphene
                                                                   oxide-based  nanocomposites  for water purification and medical
            滤分离能力。分别选用染料、蛋白质和金属离子对                                 applications: A review[J]. Bioresources, 2021, 16(4): 8525-8566.
            复合膜的过滤性能进行评价。结果显示,复合膜对                             [16]  LIN Q, ZENG G, YAN G, et al. Self-cleaning photocatalytic mxene
                                                                   composite membrane for synergistically enhanced water  treatment:
            酸性染料、牛血清蛋白和卵清蛋白的吸附率分别可                                 Oil/water separation and  dyes removal[J]. Chemical Engineering
            达到 96%、86%和 84%。说明复合膜中 CS 对酸性                          Journal, 2022, 427(2): 131668.

            染料的吸附作用要大于与蛋白质的相互作用。复合                                                           (下转第 1856 页)
   213   214   215   216   217   218   219   220   221   222   223