Page 218 - 《精细化工》2023年第8期
P. 218
·1832· 精细化工 FINE CHEMICALS 第 40 卷
2+
2+
由图 8 和表 2 可以看出,准一级动力学模型不能 膜对 Cu 、Pb 和 Cd 2+ 3 种金属离子也表现出较强
很好地拟合实验数据,相关系数均小于 0.99。而准二 的吸附能力,在 50 min 时,复合膜的吸附量接近平
2+
级动力学模型与实验数据拟合度较高,对 Cu 、Pb 2+ 衡吸附量。本文膜的制备方法简单易行,且所制备
2+
和 Cd 的相关系数值分别为 0.9999、0.9963、0.9993。 膜具有快速高效的过滤性能,为生物材料在膜过滤
根据准二级动力学模型计算得到的吸附量(q e,cal )与 领域的开发提供了思路。
实验吸附量(q e,exp)非常接近,而运用准一级动力学
参考文献:
模型计算的吸附量与实验吸附量差距较大。因此,与
[1] LI D, TIAN X, WANG Z, et al. Multifunctional adsorbent based on
准一级动力学模型相比,准二级动力学模型更适合描 metal-organic framework modified bacterial cellulose/chitosan composite
aerogel for high efficient removal of heavy metal ion and organic
述该复合膜吸附金属离子的动力学行为,这说明 CS pollutant[J]. Chemical Engineering Journal, 2020, 383: 123-127.
吸附金属离子是复杂的化学吸附过程。 [2] MAHMOODI N M, TAGHIZADEH M, TAGHIZADEH A, et al.
Bio-based magnetic metal-organic framework nanocomposite:
Ultrasound-assisted synthesis anpollutant (heavy metal and dye)
表 2 动力学模型参数拟合实验数据 removal from aqueous media[J]. Applied Surface Science, 2019, 480:
Table 2 Result of parameters of the kinetic models fitted 288-299.
by experimental data [3] LIU Q, LI Y, CHEN H, et al. Superior adsorption capacity of
functionalised straw adsorbent for dyes and heavy-metal ions[J].
2+
动力学模型 参数 Cu 2+ Pb 2+ Cd Journal of Hazardous Materials, 2020, 382: 121040.
q e, exp /(mg/g) 165.00 248.54 307.83 [4] PENG H, GUO J. Removal of chromium from wastewater by
membrane filtration, chemical precipitation, ion exchange, adsorption
q e1, cal /(mg/g) 13.77 359.17 101.33
准一级 –1 electrocoagulation, electrochemical reduction, electrodialysis,
动力学 k 1/min 0.0785 0.1291 0.0789 electrodeionization, photocatalysis and nanotechnology: A review[J].
2 Environmental Chemistry Letters, 2020, 18: 2055-2068.
R 1 0.9086 0.9248 0.9772
[5] ZHANG Y, DUAN X. Chemical precipitation of heavy metals from
q e2, cal/(mg/g) 166.39 238.66 318.47
准二级 wastewater by using the synthetical magnesium hydroxy carbonate
动力学 k 2/[g/(mg·min)] 0.0124 0.0005 0.0023 [J]. Water Science & Technology, 2020, 81(6): 1130-1136.
2 [6] XUE J, PELDSZUS S, DYKE M, et al. Removal of polystyrene
R 2 0.9999 0.9963 0.9993
microplastic spheres by alum-based coagulation-flocculation-sedimentation
(CFS) treatment of surface waters[J]. Chemical Engineering Journal,
2.8 吸附机理 2021, 422: 130023.
CS/PLA 复合膜之所以能够表现出对三类目标 [7] SARKAR S, PONCE N T, BANERJEE A, et al. Green polymeric
nanomaterials for the photocatalytic degradation of dyes: A
物(酸性染料、蛋白质和金属离子)均具有良好的 review[J]. Environmental Chemistry Letters, 2020, 18(2): 131-145.
[8] WANG J H (王佳豪), TIAN T (田湉), LI J C (李家成), et al.
吸附能力,主要依赖于 CS 分子结构中的—OH 和— Research progress on removal of antibiotic-resistant bacteria and
NH 2 基团对特定目标物的相互作用。CS 对酸性染料 resistant genes in water by photochemical AOPs[J]. Fine Chemicals
(精细化工), 2021, 38(5): 550-560
的吸附是利用 CS 中大量的—NH 2 和酸性染料中的 [9] WERTH C J, YAN C, TROUTMAN J P. Factors impeding
阴离子键合作用;CS 对蛋白质的吸附,一方面是 replacement of ion exchange with (electro) catalytic treatment for
nitrate removal from drinking water[J]. American Chemical Society,
CS 和蛋白质分子之间形成氢键,另一方面是 CS 和 2020, 1(1): 6-20.
蛋白质分子之间带相反的电荷产生了静电吸附作 [10] DIXIT F, MOHSENI M, BARBEAU B, et al. PFOA and PFOS
removal by ion exchange for water reuse and drinking applications:
Role of organic matter characteristics[J]. Environmental Science:
用;CS 对金属离子的吸附则是利用 CS 中的—NH 2
Water Research & Technology, 2019, 5(10): 1782-1795.
和金属离子通过配位键结合,形成稳定的螯合物。 [11] RONG N, CHEN C, OUYANG K, et al. Adsorption characteristics of
directional cellulose nanofiber/chitosan/montmorillonite aerogel as
3 结论 adsorbent for wastewater treatment[J]. Separation and Purification
Technology, 2021, 274(1): 119120.
[12] ALMASIAN A, GIYAHI M, GH C F, et al. Removal of heavy metal
本文制备了一种 CS/PLA 环境友好型复合膜材 ions by modified PAN/PANI-nylon core-shell nanofibers membrane:
Filtration performance, antifouling and regeneration behavior[J].
料,由于 PLA 本身并没有用于吸附的活性点位,对 Chemical Engineering Journal, 2018, 351: 1166-1178.
污染物没有吸附作用,因此,本实验通过静电纺的 [13] LIU Z J (刘正江), GUO S S (郭沙沙), ZHANG Y T (张云亭), et al.
Research progress on the application of composite modified
方法使制备的 PLA 纤维具有疏松多孔的结构,该结 montmorillonite in sewage treatment[J]. Fine Chemicals (精细化工),
构有利于水分子的快速流通,从而提高膜的渗透通 2022, 39(5): 86-93.
[14] MONDAL S, DAS S, GAUTAM U K. Defect-rich, negatively-
量。以 PLA 纤维膜为基底层,利用刮涂法在纤维膜 charged SnS 2 nanosheets for efficient photocatalytic Cr(Ⅵ) reduction
层上形成致密的 CS 阻隔层,不仅增强了膜的力学 and organic dye adsorption in water[J]. Journal of Colloid and
Interface Science, 2021, 603: 110-119.
性能,更重要的是提高了复合膜对不同目标物的过 [15] KHANDEGAR V, KAUR P J, CHANANA P. Chitosan and graphene
oxide-based nanocomposites for water purification and medical
滤分离能力。分别选用染料、蛋白质和金属离子对 applications: A review[J]. Bioresources, 2021, 16(4): 8525-8566.
复合膜的过滤性能进行评价。结果显示,复合膜对 [16] LIN Q, ZENG G, YAN G, et al. Self-cleaning photocatalytic mxene
composite membrane for synergistically enhanced water treatment:
酸性染料、牛血清蛋白和卵清蛋白的吸附率分别可 Oil/water separation and dyes removal[J]. Chemical Engineering
达到 96%、86%和 84%。说明复合膜中 CS 对酸性 Journal, 2022, 427(2): 131668.
染料的吸附作用要大于与蛋白质的相互作用。复合 (下转第 1856 页)