Page 226 - 《精细化工》2023年第8期
P. 226

·1840·                            精细化工   FINE CHEMICALS                                 第 40 卷

            涂层无明显差别。对比不同试样在盐水中浸泡 168 h                         [11]  MONDRAGON G, SANTAMARIA-ECHART A, HORMAIZTEGUI
                                                                   M E V, et al. Nanocomposites of waterborne polyurethane reinforced
            后的外观形貌,无涂层钢板浸泡之后出现大面积生                                 with cellulose nanocrystals from sisal fibres[J]. Journal of Polymers
            锈腐蚀现象(图 10e),样品 WPU-N-TMP 出现起                          and the Environment, 2018, 26(5): 1869-1880.
                                                               [12]  LU Y D (陆亚东), ZHANG P B (张萍波), JIANG P P (蒋平平), et al.
            泡、发白现象(图 10f),样品 WPU-CNC-0.0 有少                        Synthesis and  preparation  of carboxylic-acid-type waterborne
                                                                   polyurethane modified with nano-cellulose whiskers[J]. China
            量起泡现象,总体腐蚀轻微(图 10g)。试样                                 Plastics (中国塑料), 2019, 33(2): 75-81.
            WPU-CNC-1.5 在浸泡后未出现起泡、开裂、剥落、                       [13]  ABD El-FATTAH M, HASAN A  M A, KESHAWY M,  et al.
                                                                   Nanocrystalline cellulose as an eco-friendly reinforcing additive to
            明显变色和明显失光现象(图 10h),耐腐蚀性能优良。                            polyurethane coating for augmented anticorrosive behavior[J].
                                                                   Carbohydrate Polymers, 2018, 183: 311-318.
            3   结论                                             [14]  LEI W Q,  ZHOU  X, FANG C Q,  et al. Eco-friendly waterborne
                                                                   polyurethane reinforced with cellulose nanocrystal from office waste
                                                                   paper by two  different methods[J]. Carbohydrate Polymers, 2019,
                (1)交联剂 TMP 与改性 CNC 的协同作用使 WPU                      209:299-309.
                                                               [15]  ZHANG P  B, LU Y D, FAN M  M,  et al. Modified cellulose
            基复合材料内部交联度提高,WPU 干燥成膜过程中                               nanocrystals enhancement to mechanical properties and water
            的缩孔明显减少,复合材料成膜更加致密。复合材                                 resistance of vegetable oil-based waterborne polyurethane[J]. Journal
                                                                   of Applied Polymer Science, 2019, 136(47): 48228.
            料拉伸强度得到提高,水接触角增大,耐水性大幅                             [16]  WANG X Y, CUI Y, WANG Y N, et al. Preparation and characteristics of
                                                                   crosslinked fluorinated acrylate  modified waterborne polyurethane
            提升。通过电化学及腐蚀浸泡实验证实了复合膜层在                                for metal protection coating[J]. Progress in Organic Coatings, 2021,
            模拟海水体系中的耐腐蚀性能得到显著改善。                                   158: 106371.
                                                               [17]  CHEN C, WEI S C, XIANG B, et al. Synthesis of silane functionalized
                (2)通过系列实验,确定 TMP(含量 2.0%)                          graphene oxide and its application in anti-corrosion waterborne
            与改性 CNC(含量 1.5%)共同添加制备的 CNC/WPU                        polyurethane composite coatings[J]. Coatings, 2019, 9(9): 587.
                                                               [18]  YEH T C, HUANG T C, HUANG  H  Y,  et al. Electrochemical
            复合材料性能最优。该条件下,WPU 复合薄膜的拉                               investigations on  anticorrosive and electrochromic properties of
                                                                   electroactive polyurea[J]. Polymer Chemistry, 2012, 3(8): 2209-2216.
            伸强度达到最大(35.2 MPa),材料的吸水率降至最                        [19]  DAI H J, OU S Y, HUANG Y, et al. Utilization of pineapple peel for
                                              –8
                                                    2
            低 6.0 %左右,腐蚀电流降到 9.76×10 A/cm ,阻抗                      production of nanocellulose and film application[J]. Cellulose, 2018,
                                                                   25(3): 1743-1756.
                                     7
                                           2
            谱容抗弧半径达到 3.15×10 Ω·cm 。本文为综合性                      [20]  SANTAMARIA-ECHART A, UGARTE L, ARBELAIZ A,  et al.
            能优良的 WPU 防腐蚀涂料的制备提供了新的思路。                              Modulating the microstructure of waterborne polyurethanes for
                                                                   preparation of environmentally friendly nanocomposites by incorporating
                                                                   cellulose nanocrystals[J]. Cellulose, 2017, 24(2): 823-834.
            参考文献:                                              [21]  LI W X, JU B  Z, ZHANG S F.  Novel amphiphilic cellulose
                                                                   nanocrystals for pH-responsive Pickering emulsions[J]. Carbohydrate
            [1]   NOREEN  A,  ZIA K M, ZUBER  M,  et al.  Recent trends in   Polymers, 2020, 229: 115401.
                 environmentally friendly water-borne polyurethane coatings: A   [22]  WANG Y L, ZHANG C B, XU N, et al. Synthesis and properties of
                 review[J]. Korean  Journal of Chemical Engineering, 2016, 33(2):
                 388-400.                                          organoboron functionalized nanocellulose for crosslinking low
            [2]   YANG J J (杨建军), CHEN H Y (陈虹雨), WU Q Y (吴庆云),   et al.   polymer fracturing fluid system[J]. RSC Advances, 2021, 11(22):
                                                                   13466-13474.
                 Latest research progress of modified waterborne polyurethane anticorrosive   [23]  FERNANDES S C, SADOCCO P, CAUSIO J, et al. Antimicrobial
                 coatings[J]. Fine Chemicals (精细化工), 2021, 38(10): 1981-1987.   pullulan  derivative prepared by grafting with 3-aminopropy-
            [3]   DE LUNA M S. Recent trends in waterborne and bio-based polyurethane   ltrimethoxysilane: Characterization and ability to form transparent
                 coatings for corrosion protection[J]. Advanced Materials Interfaces,
                 2022, 9(11): 2101775.                             films [J]. Food Hydrocolloids, 2014, 35: 247-252.
            [4]   YU Z X,  DI H H, MA  Y,  et al. Preparation of graphene oxide   [24]  CHOO K W, DHHITAL R, MAO L, et al. Development of polyvinyl
                 modified by titanium dioxide to enhance the anti-corrosion performance   alcohol/chitosan/modified bacterial nanocellulose films incorporated
                                                                   with  4-hexylresorcinol for food  packaging applications[J]. Food
                 of epoxy coatings[J]. Surface and Coatings Technology, 2015, 276:   Packaging and Shelf Life, 2021, 30: 100769.
                 471-478.
            [5]   LIAO L Y, LI X Y, WANG Y, et al. Effects of surface structure and   [25]  ZANINI M, LAVORATTI A,  LAZZARI L K,  et al. Producing
                 morphology of nanoclays on the properties  of Jatropha curcas   aerogels from silanized cellulose nanofiber suspension [J]. Cellulose,
                 oil-based  waterborne polyurethane/clay nanocomposites[J]. Industrial   2017, 24(2): 769-779.
                 & Engineering Chemistry Research, 2016, 55(45): 11689-11699.   [26]  GONG J, MO L H, LI J. A comparative study on the preparation and
            [6]   CHEN X Y, YUAN J H, HUANG J, et al. Large-scale fabrication of   characterization of  cellulose nanocrystals with various polymorphs
                 superhydrophobic polyurethane/nano-Al 2O 3 coatings by suspension   [J]. Carbohydrate Polymers, 2018, 195:18-28.
                 flame spraying for anti-corrosion applications[J]. Applied Surface   [27]  AHVENAINEN P, KONTRO I, SVEDSTR M K. Comparison  of
                 Science, 2014, 311: 864-869.                      sample crystallinity determination methods by X-ray diffraction for
            [7]   LIN J M (林家明), LIU W Q (刘伟区), LIANG L Y (梁利岩), et al.   challenging cellulose  Ⅰ   materials [J]. Cellulose, 2016, 23(2):
                 Preparation and  properties  of modified hexagonal boron nitride/   1073-1086.
                 waterborne polyurethane coatings[J]. Fine Chemicals (精细化工),   [28]  GE L,  YIN J J, YAN D W,  et al. Construction of nanocrystalline
                 2021, 38(10): 2132-2140.                          cellulose-based composite fiber films with excellent porosity
            [8]   DOMINGUES R  M, GOMES M E, REIS R L. The potential  of   performances via an electrospinning strategy[J]. ACS Omega, 2021,
                 cellulose  nanocrystals  in  tissue  engineering  strategies[J].  6(7): 4958-4967.
                 Biomacromolecules, 2014, 15(7): 2327-2346.    [29]  HE Y J, BOLUK Y, PAN J S, et al. Comparative study of CNC and
            [9]   LIN N, HUANG  J, DUFRESNE A. Preparation, properties and   CNF as additives in waterborne acrylate-based anti-corrosion
                 applications of polysaccharide nanocrystals in advanced  functional   coatings[J]. Journal of Dispersion  Science and Technology, 2020,
                 nanomaterials: A review[J]. Nanoscale, 2012, 4(11): 3274-3294.   41(13): 2037-2047.
            [10]  ZHANG P B, LU Y D, FAN M M, et al. Role  of cellulose-based   [30]  MEKONNEN T H, HAILE T, LY M. Hydrophobic functionalization
                 composite materials in synergistic reinforcement of environmentally   of cellulose nanocrystals for enhanced corrosion resistance of
                 friendly waterborne polyurethane[J]. Progress in Organic  Coatings,   polyurethane nanocomposite coatings[J]. Applied Surface Science,
                 2020, 147: 105811.                                2021, 540: 148299.
   221   222   223   224   225   226   227   228   229   230   231