Page 52 - 《精细化工》2023年第8期
P. 52

·1666·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 LiFePO 4 and CuO QDs surface-interface regulation[J]. Catalysis   oxide composites for the electrochemical detection of bisphenol A[J].
                 Science & Technology, 2022, 12(16): 5152-5161.    Analytical Methods, 2018, 10(23): 2722-2730.
            [43]  FIAZ M, KASHIF M, MAJEED S, et al. Facile fabrication of highly   [55]  YIN S, CHEN  Y, LI M,  et al.Construction of NH 2-MIL-
                 efficient photoelectrocatalysts  M xO y@NH 2-MIL-125(Ti) for  enhanced   125(Ti)/Bi 2WO 6 composites with accelerated charge separation  for
                 hydrogen evolution reaction[J]. ChemistrySelect, 2019, 4(23): 6996-   degradation of organic contaminants under visible light irradiation[J].
                 7002.                                             Green Energy & Environment, 2020, 5(2): 203-213.
            [44]  LING L Q, TU  Y, LONG X Y, et al. The one-step synthesis of   [56]  AHMED S H, BAKIRO M, ALZAMLY A. Photocatalytic activities
                 multiphase SnS 2  modified by NH 2-MIL-125(Ti) with effective   of FeNbO 4/NH 2-MIL-125(Ti) composites toward the cycloaddition
                 photocatalytic performance for Rhodamine B under visible light[J].   of CO 2 to propylene oxide[J]. Molecules, 2021, 26(6): 1963.
                 Optical Materials, 2021, 111: 110564.         [57]  HE Y Z, LUO S, HU X L, et al. NH 2-MIL-125(Ti) encapsulated with
            [45]  GAO S, CEN W  L, LI Q,  et al.  A  mild one-step method for   in situ-formed carbon nanodots with up-conversion effect for
                 enhancing optical absorption of amine-functionalized metal-organic   improving photocatalytic NO removal and H 2 evolution[J]. Chemical
                 frameworks[J]. Applied Catalysis B-Environmental, 2018, 227: 190-   Engineering Journal, 2021, 420: 127643.
                 197.                                          [58]  HAN  L,  ZHANG  X M, WU D Y.  MoS 2 quantum dots decorated
            [46]  WANG H, ZHANG Q, LI J J, et al. The covalent coordination-driven   NH 2-MIL-125 heterojunction: Preparation and visible light photocatalytic
                 Bi 2S 3@NH 2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic   performance[J]. Journal of Inorganic Materials, 2019, 34(11): 1205-
                 CO 2 reduction and dye degradation performance[J]. Journal of   1209.
                 Colloid and Interface Science, 2022, 606: 1745-1757.   [59]  ABDELHAMEED R M, AL KIEY S A, WASSEL A R, et al. Silver
            [47]  ZHANG X  H, CHEN Z W, LUO  Y, et al. Construction of   chromate doped Ti-based metal organic framework: Synthesis,
                 NH 2-MIL-125(Ti)/CdS  Z-scheme heterojunction  for  efficient   characterization, and electrochemical  and selective photocatalytic
                 photocatalytic H 2 evolution[J]. Journal of Hazardous Materials, 2021,   reduction properties[J]. New Journal of Chemistry, 2021, 45(21):
                 405: 124128.                                      9526-9537.
            [48]  YU Z M, LV Y K, ZHANG F, et al. Catalytic degradation of organic   [60]  HE X  K, ZHU  D C.  In situ  solvothermal  method of C 3N 5@
                 pollutants in water under visible light  by BiOCl@NH 2-MIL-   NH 2-MIL-125 composites with enhanced visible-light photocatalytic
                 125(Ti-Zr) composite photocatalyst[J]. Journal of Materials Science-   performance[J]. Journal of Materials Science-Materials in Electronics,
                 Materials in Electronics, 2022, 33(24): 19599-19611.   2022, 33(1): 388-398.
            [49]  HU Q S, DI J, WANG B,  et al.  In-situ  preparation of NH 2-   [61]  DING J, CHEN  M Q, DU X W,  et al. Visible-light-driven
                 MIL-125(Ti)/BiOCl composite with accelerating charge carriers for   photoreduction of CO 2 to CH 4 with H 2O over amine-functionalized
                 boosting visible light photocatalytic  activity[J]. Applied Surface   MIL-125(Ti)[J]. Catalysis Letters, 2019, 149(12): 3287-3295.
                 Science, 2019, 466: 525-534.                  [62]  OLOWOYO J O,  SAINI U, KUMAR M, et al. Reduced graphene
            [50]  DU J, ZHANG J X, YANG T  Y, et al. The research on the   oxide/NH 2-MIL-125(Ti) composite: Selective CO 2 photoreduction to
                 construction and the photocatalytic performance of BiOI/NH 2-MIL-   methanol under visible light and computational insights into charge
                 125(Ti) composite[J]. Catalysts, 2021, 11(1): 24.   separation[J]. Journal of CO 2 Utilization, 2020, 42: 101300.
            [51]  WANG Y, FENG S, WU W, et al. Ionic liquid-assisted solvothermal   [63]  ZHAO Y X, CAI W, CHEN J X, et al. A highly efficient composite
                 construction of NH 2-MIL-125(Ti)/BiOBr heterojunction for removing   catalyst constructed from NH 2-MIL-125(Ti) and reduced graphene
                 tetracycline under visible light[J]. Optical Materials, 2022, 123:   oxide for CO 2 photoreduction[J]. Frontiers in Chemistry, 2019, 7: 789.
                 111817.                                       [64]  BAI X (白雪), ZHANG W (张威), HAN J P (韩俊萍),  et al.
            [52]  WANG J, CHEN C C, ZHAO Z H, et al. Construction of N-doped   Application of metal-organic frame  materials in photocatalytic
                 g-C 3N 4/NH 2-MIL-125(Ti)  S-scheme  heterojunction for enhanced   hydrogen production[J]. Rare Metals Letters (中国材料进展), 2022,
                 photocatalytic degradation of organic pollutants: DFT calculation and   41(3): 206-214.
                 mechanism study[J]. Journal of Alloys and Compounds, 2022, 922:   [65]  AFZALI N, TANGESTANINEJAD  S, KESHAVARZI R, et  al.
                 166288.                                           Hierarchical Ti-based MOF with embedded RuO 2 nanoparticles: A
            [53]  MA Y J, WEI X D, AISHANJIANG K,  et al. Boosting  the   highly efficient photoelectrode for visible light water oxidation[J].
                 photocatalytic performance of Cu 2O for hydrogen generation by Au   ACS Sustainable  Chemistry & Engineering,  2020, 8(50):  18366-
                 nanostructures and rGO nanosheets[J]. RSC Advances, 2022, 12(48):   18376.
                 31415-31423.                                  [66]  SU Z Z, ZHANG B X, SHI J B,  et al. An  NH 2-MIL-
            [54]  LING L J, XU J P, DENG Y H, et al. One-pot hydrothermal synthesis   125(Ti)/Pt/g-C 3N 4 catalyst promoting visible-light photocatalytic H 2
                 of amine-functionalized metal-organic framework/reduced graphene   production[J]. Sustainable Energy & Fuels, 2019, 3(5): 1233-1238.




            (上接第 1635 页)                                           11(8): 3446.
                                                               [58]  WANG X, LENG W Q, NAVANATHARA R M O, et al. Anticorrosive
            [55]  YANG S Q, ZHU S, HONG R  Y. Graphene oxide/polyaniline   epoxy coatings from direct epoxidation of bioethanol fractionated
                 nanocomposites used in anticorrosive coatings  for environmental   lignin[J]. International Journal of Biological Macromolecules, 2022,
                 protection[J]. Coatings, 2020, 10(12): 1215.      221: 268-277.
            [56]  FAN W H, WANG H Y, WANG C J, et al. Epoxy coating capable of   [59]  IRFAN M, IQBAL S, AHMAD S.  Waterborne reduced graphene
                 providing multi-component passive film for long-term anti-corrosion   oxide dispersed sebacic acid modified soy epoxy nanocomposite: A
                 of steel[J]. Applied Surface Science, 2020, 521: 146417.   green and sustainable approach for high performance  mechanically
            [57]  FACCINI M,  BAUTISTA L, SOLDI L, et  al. Environmentally   robust anticorrosive coatings[J]. Progress in Organic Coatings, 2022,
                 friendly anticorrosive polymeric coatings[J]. Applied Sciences, 2021,   170: 106984.
   47   48   49   50   51   52   53   54   55   56   57