Page 52 - 《精细化工》2023年第8期
P. 52
·1666· 精细化工 FINE CHEMICALS 第 40 卷
LiFePO 4 and CuO QDs surface-interface regulation[J]. Catalysis oxide composites for the electrochemical detection of bisphenol A[J].
Science & Technology, 2022, 12(16): 5152-5161. Analytical Methods, 2018, 10(23): 2722-2730.
[43] FIAZ M, KASHIF M, MAJEED S, et al. Facile fabrication of highly [55] YIN S, CHEN Y, LI M, et al.Construction of NH 2-MIL-
efficient photoelectrocatalysts M xO y@NH 2-MIL-125(Ti) for enhanced 125(Ti)/Bi 2WO 6 composites with accelerated charge separation for
hydrogen evolution reaction[J]. ChemistrySelect, 2019, 4(23): 6996- degradation of organic contaminants under visible light irradiation[J].
7002. Green Energy & Environment, 2020, 5(2): 203-213.
[44] LING L Q, TU Y, LONG X Y, et al. The one-step synthesis of [56] AHMED S H, BAKIRO M, ALZAMLY A. Photocatalytic activities
multiphase SnS 2 modified by NH 2-MIL-125(Ti) with effective of FeNbO 4/NH 2-MIL-125(Ti) composites toward the cycloaddition
photocatalytic performance for Rhodamine B under visible light[J]. of CO 2 to propylene oxide[J]. Molecules, 2021, 26(6): 1963.
Optical Materials, 2021, 111: 110564. [57] HE Y Z, LUO S, HU X L, et al. NH 2-MIL-125(Ti) encapsulated with
[45] GAO S, CEN W L, LI Q, et al. A mild one-step method for in situ-formed carbon nanodots with up-conversion effect for
enhancing optical absorption of amine-functionalized metal-organic improving photocatalytic NO removal and H 2 evolution[J]. Chemical
frameworks[J]. Applied Catalysis B-Environmental, 2018, 227: 190- Engineering Journal, 2021, 420: 127643.
197. [58] HAN L, ZHANG X M, WU D Y. MoS 2 quantum dots decorated
[46] WANG H, ZHANG Q, LI J J, et al. The covalent coordination-driven NH 2-MIL-125 heterojunction: Preparation and visible light photocatalytic
Bi 2S 3@NH 2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic performance[J]. Journal of Inorganic Materials, 2019, 34(11): 1205-
CO 2 reduction and dye degradation performance[J]. Journal of 1209.
Colloid and Interface Science, 2022, 606: 1745-1757. [59] ABDELHAMEED R M, AL KIEY S A, WASSEL A R, et al. Silver
[47] ZHANG X H, CHEN Z W, LUO Y, et al. Construction of chromate doped Ti-based metal organic framework: Synthesis,
NH 2-MIL-125(Ti)/CdS Z-scheme heterojunction for efficient characterization, and electrochemical and selective photocatalytic
photocatalytic H 2 evolution[J]. Journal of Hazardous Materials, 2021, reduction properties[J]. New Journal of Chemistry, 2021, 45(21):
405: 124128. 9526-9537.
[48] YU Z M, LV Y K, ZHANG F, et al. Catalytic degradation of organic [60] HE X K, ZHU D C. In situ solvothermal method of C 3N 5@
pollutants in water under visible light by BiOCl@NH 2-MIL- NH 2-MIL-125 composites with enhanced visible-light photocatalytic
125(Ti-Zr) composite photocatalyst[J]. Journal of Materials Science- performance[J]. Journal of Materials Science-Materials in Electronics,
Materials in Electronics, 2022, 33(24): 19599-19611. 2022, 33(1): 388-398.
[49] HU Q S, DI J, WANG B, et al. In-situ preparation of NH 2- [61] DING J, CHEN M Q, DU X W, et al. Visible-light-driven
MIL-125(Ti)/BiOCl composite with accelerating charge carriers for photoreduction of CO 2 to CH 4 with H 2O over amine-functionalized
boosting visible light photocatalytic activity[J]. Applied Surface MIL-125(Ti)[J]. Catalysis Letters, 2019, 149(12): 3287-3295.
Science, 2019, 466: 525-534. [62] OLOWOYO J O, SAINI U, KUMAR M, et al. Reduced graphene
[50] DU J, ZHANG J X, YANG T Y, et al. The research on the oxide/NH 2-MIL-125(Ti) composite: Selective CO 2 photoreduction to
construction and the photocatalytic performance of BiOI/NH 2-MIL- methanol under visible light and computational insights into charge
125(Ti) composite[J]. Catalysts, 2021, 11(1): 24. separation[J]. Journal of CO 2 Utilization, 2020, 42: 101300.
[51] WANG Y, FENG S, WU W, et al. Ionic liquid-assisted solvothermal [63] ZHAO Y X, CAI W, CHEN J X, et al. A highly efficient composite
construction of NH 2-MIL-125(Ti)/BiOBr heterojunction for removing catalyst constructed from NH 2-MIL-125(Ti) and reduced graphene
tetracycline under visible light[J]. Optical Materials, 2022, 123: oxide for CO 2 photoreduction[J]. Frontiers in Chemistry, 2019, 7: 789.
111817. [64] BAI X (白雪), ZHANG W (张威), HAN J P (韩俊萍), et al.
[52] WANG J, CHEN C C, ZHAO Z H, et al. Construction of N-doped Application of metal-organic frame materials in photocatalytic
g-C 3N 4/NH 2-MIL-125(Ti) S-scheme heterojunction for enhanced hydrogen production[J]. Rare Metals Letters (中国材料进展), 2022,
photocatalytic degradation of organic pollutants: DFT calculation and 41(3): 206-214.
mechanism study[J]. Journal of Alloys and Compounds, 2022, 922: [65] AFZALI N, TANGESTANINEJAD S, KESHAVARZI R, et al.
166288. Hierarchical Ti-based MOF with embedded RuO 2 nanoparticles: A
[53] MA Y J, WEI X D, AISHANJIANG K, et al. Boosting the highly efficient photoelectrode for visible light water oxidation[J].
photocatalytic performance of Cu 2O for hydrogen generation by Au ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18366-
nanostructures and rGO nanosheets[J]. RSC Advances, 2022, 12(48): 18376.
31415-31423. [66] SU Z Z, ZHANG B X, SHI J B, et al. An NH 2-MIL-
[54] LING L J, XU J P, DENG Y H, et al. One-pot hydrothermal synthesis 125(Ti)/Pt/g-C 3N 4 catalyst promoting visible-light photocatalytic H 2
of amine-functionalized metal-organic framework/reduced graphene production[J]. Sustainable Energy & Fuels, 2019, 3(5): 1233-1238.
(上接第 1635 页) 11(8): 3446.
[58] WANG X, LENG W Q, NAVANATHARA R M O, et al. Anticorrosive
[55] YANG S Q, ZHU S, HONG R Y. Graphene oxide/polyaniline epoxy coatings from direct epoxidation of bioethanol fractionated
nanocomposites used in anticorrosive coatings for environmental lignin[J]. International Journal of Biological Macromolecules, 2022,
protection[J]. Coatings, 2020, 10(12): 1215. 221: 268-277.
[56] FAN W H, WANG H Y, WANG C J, et al. Epoxy coating capable of [59] IRFAN M, IQBAL S, AHMAD S. Waterborne reduced graphene
providing multi-component passive film for long-term anti-corrosion oxide dispersed sebacic acid modified soy epoxy nanocomposite: A
of steel[J]. Applied Surface Science, 2020, 521: 146417. green and sustainable approach for high performance mechanically
[57] FACCINI M, BAUTISTA L, SOLDI L, et al. Environmentally robust anticorrosive coatings[J]. Progress in Organic Coatings, 2022,
friendly anticorrosive polymeric coatings[J]. Applied Sciences, 2021, 170: 106984.