Page 51 - 《精细化工》2023年第8期
P. 51

第 8 期                        张   平,等: NH 2 -MIL-125(Ti)光催化剂的研究进展                        ·1665·


                 CO 2 ad- and desorption[J]. Journal of Physical Chemistry C, 2019,   induced activity  for CO 2 reduction[J]. Angewandte Chemie
                 123(5): 2940-2952.                                International Edition, 2012, 51(14): 3364-3367.
            [10]  ZHAO Y, WU M Y, GUO Y, et al. Metal-organic framework based   [27]  HOU  C T,  XU Q, WANG Y  J,  et al. Synthesis of Pt@NH 2-
                 membranes for selective separation of target ions[J]. Journal of   MIL-125(Ti) as a  photocathode material for photoelectrochemical
                 Membrane Science, 2021, 634: 19407.               hydrogen production[J]. RSC Advances, 2013, 3(43): 19820-19823.
            [11]  GUO  Z Z, FLOREA A, JIANG M J, et  al. Molecularly imprinted   [28]  MA X, WANG L, ZHANG Q, et al. Switching on the photocatalysis
                 polymer/metal organic framework based chemical sensors[J]. Coatings,   of metal-organic frameworks by engineering structural defects[J].
                 2016, 6(4): 42.                                   Angewandte Chemie International Edition, 2019, 58(35): 12175-
            [12]  HAMON L, SERRE  C, DEVIC  T,  et al. Comparative study of   12179.
                 hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(Ⅴ),   [29]  ZHANG  Y J,  WEN C F,  WU X F,  et al. Reverse replacement in
                 MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room   NH 2-MIL-125 with 1,4-dicarboxybenzene for enhanced photocatalytic
                 temperature[J]. Journal of the American Chemical Society, 2009,   hydrogen generation[J]. Chemistry-A European Journal, 2022, 28(56):
                 131(25): 8775.                                    938.
            [13]  WANG L, FU J W, CHEN  Y H, et al. Persulfate-based  visible   [30]  MOHAMMADNEZHAD F, KAMPOURI S, WOLFF S K, et  al.
                 photocatalysis with a novel stability enhanced Fe-based metal-   Tuning the optoelectronic properties of hybrid  functionalized
                 organic framework[J]. Journal of Solid State Chemistry, 2022, 313:   MIL-125-NH 2 for photocatalytic hydrogen evolution[J]. ACS
                 123297.                                           Applied Materials & Interfaces, 2021, 13(4): 5044-5051.
            [14]  ABDELHAMEED R M, ABU-ELGHAIT M, EL-SHAHAT M.   [31]  FU  Y H, SUN L,  YANG H,  et al. Visible-light-induced aerobic
                 Hybrid three MOFs composites  (ZIF-67@ZIF-8@MIL-125-NH 2):   photocatalytic oxidation  of aromatic alcohols  to aldehydes over
                 Enhancement the biological and visible-light photocatalytic activity[J].   Ni-doped NH 2-MIL-125(Ti)[J]. Applied Catalysis B-Environmental,
                 Journal of Environmental Chemical Engineering, 2020, 8(5): 104107.   2016, 187: 212-217.
            [15]  RAN J  H,  CHEN  H B, BI S G,  et al. One-step  in-situ  growth of   [32]  CHEN X L, XIAO S N, WANG  H,  et al. MOFs conferred with
                 zeolitic imidazole frameworks-8 on cotton fabrics for photocatalysis   transient metal centers  for enhanced photocatalytic activity[J].
                 and antimicrobial activity[J]. Cellulose, 2020, 27(17): 10447-10459.   Angewandte Chemie International Edition, 2020, 59(39): 17182-
            [16]  LOLLAR C  T, PANG J D, QIN J S,  et al. Thermodynamically   17186.
                 controlled linker installation in flexible zirconium metal-organic   [33]  THI H T N, THI K N T, HOANG N B, et al. Enhanced degradation
                 frameworks[J]. Crystal Growth & Design, 2019, 19(4): 2069-2073.   of rhodamine B by  metallic organic frameworks based on NH 2-
            [17]  LIU W H, GUO Z F, JIN  Z, et al. Visible-light-driven   MIL-125(Ti) under visible light[J]. Materials, 2021, 14(24): 7741.
                 sonophotocatalysis for enhanced Cr(Ⅵ) reduction over mixed-linker   [34]  FU Y H, YANG  H, DU R F,  et al. Enhanced photocatalytic CO 2
                 zirconium-porphyrin MOFs[J]. Catalysis Science & Technology,   reduction over Co-doped NH 2-MIL-125(Ti) under visible light[J].
                 2022, 12(7): 2176-2183.                           RSC Advances, 2017, 7(68): 42819-42825.
            [18]  WANG F X (王茀学), WANG C C (王崇臣), WANG P (王鹏), et al.   [35]  CHEN S Y, HAI  G  T, GAO H Y, et al. Modulation of the charge
                 Syntheses and applications  of UiO series of MOFs[J]. Chinese   transfer behavior of Ni(Ⅱ)-doped NH 2-MIL-125(Ti): Regulation of
                 Journal of Inorganic Chemistry (无机化学学报), 2017, 33(5):   Ni ions content  and enhanced photocatalytic CO 2 reduction
                 713-737.                                          performance[J]. Chemical Engineering Journal, 2021, 406: 126886
            [19]  ZHANG C X, LEI D, XIE  C F,  et al. Piezo-photocatalysis over   [36]  CHENG  X M,  WANG P,  WANG S Q,  et al. Ti(Ⅳ)-MOF with
                 metal-organic frameworks:  Promoting photocatalytic activity by   specific facet-Ag nanoparticle composites for enhancing the
                 piezoelectric effect[J]. Advanced Materials, 2021, 33(51): 2106308.   photocatalytic activity and selectivity of CO 2  reduction[J]. ACS
            [20]  ZHU S R, LIU P F,  WU M K,  et al. Enhanced photocatalytic   Applied Materials & Interfaces, 2022, 14(28): 3250-3259.
                 performance of BiOBr/NH 2-MIL-125(Ti) composite for dye degradation   [37]  MUELAS-RAMOS  V, BELVER C, RODRIGUEZ J J,  et al.
                 under visible light[J]. Dalton Transactions, 2016, 45(43): 17521-   Synthesis of noble metal-decorated NH 2-MIL-125 titanium MOF for
                 17529.                                            the photocatalytic degradation of  acetaminophen under solar
            [21]  HU S,  LIU M, GUO X W,  et al.  Effect of titanium ester on   irradiation[J]. Separation and Purification Technology, 2021, 272:
                 synthesizing NH 2-MIL-125(Ti): Morphology changes from  circular   118896.
                 plate to octahedron and rhombic dodecahedron[J]. Journal of Solid   [38]  ZHOU H,  ZHU X  D, GE P,  et al. Synergistic coupling  of surface
                 State Chemistry, 2018, 262: 237-243.              plasmon resonance with metal-organic frameworks based biomimetic
            [22]  BAN  Y J, LI  Y  S, LIU X L,  et al. Solvothermal synthesis of   Z-Scheme catalyst for enhanced  photoelectrochemical water
                 mixed-ligand metal-organic framework ZIF-78 with controllable size   splitting[J]. Applied Surface Science, 2022, 605: 154693.
                 and morphology[J]. Microporous and  Mesoporous Materials, 2013,   [39]  SUN X J (孙雪娇), WANG S Q (王思琦), DONG J (董佳), et al.
                 173: 29-36.                                       Construction of Ag/NH 2-MIL-125(Ti) and visible light reduction of
            [23]  ZHAO X  X ( 赵晓霞 ).Study on photocatalytic oxidation  of   Cr(Ⅵ) in water[J]. Applied Chemistry (应用化学), 2019, 36(3):
                 cyclohexane with NH 2-MIL-125(Ti) and its composites[D]. Beijing:   314-323.
                 China University of Petroleum (Beijing)〔中国石油大学(北京)〕, 2018.   [40]  OVCHAROV  M L, MISHURA A M, SHVALAGIN V  V,  et al.
            [24]  MA R  Y (马蕊英), MA D (马迪), ZHAO  X X (赵晓霞),  et al.   Semiconductor  nanocatalysts for CO 2 photoconversion giving
                 Preparation and photocatalytic properties of NH 2-MIL-125(Ti) with   organic compounds: Design and physicochemical characteristics: A
                 different crystal morphology[J]. Fine Chemicals (精细化工), 2019,   review[J]. Theoretical and Experimental Chemistry, 2019, 55(1):
                 36(3): 481-486.                                   2-28.
            [25]  YANG Z H (杨哲涵), ZHANG X M (张贤明), YANG Z J (杨镇嘉),   [41]  KAUR  M, MEHTA S K, DEVI  P,  et al. NH 2-MIL-125(Ti)
                 et al. Preparation of photocatalyst NH 2-MIL-125(Ti) and its effect on   nanoparticles decorated over ZnO microrods: An efficient bifunctional
                 catalytic removal of NO x[J]. Journal of Chongqing Technology and   material for degradation of levofloxacin and detection of Cu(Ⅱ)[J].
                 Business University (重庆工商大学学报), 2023, 40(1): 1-7.   Journal of Alloys and Compounds, 2022, 928: 166909.
            [26]  FU Y H, SUN D  R,  CHEN  Y J,  et al. An amine-functionalized   [42]  ZHOU J, JIA Q W, WANG L Y, et al. Highly efficient and selective
                 titanium  metal-organic framework photocatalyst with visible-light-   photocatalytic CO 2 reduction using  MIL-125(Ti) and based on
   46   47   48   49   50   51   52   53   54   55   56