Page 51 - 《精细化工》2023年第8期
P. 51
第 8 期 张 平,等: NH 2 -MIL-125(Ti)光催化剂的研究进展 ·1665·
CO 2 ad- and desorption[J]. Journal of Physical Chemistry C, 2019, induced activity for CO 2 reduction[J]. Angewandte Chemie
123(5): 2940-2952. International Edition, 2012, 51(14): 3364-3367.
[10] ZHAO Y, WU M Y, GUO Y, et al. Metal-organic framework based [27] HOU C T, XU Q, WANG Y J, et al. Synthesis of Pt@NH 2-
membranes for selective separation of target ions[J]. Journal of MIL-125(Ti) as a photocathode material for photoelectrochemical
Membrane Science, 2021, 634: 19407. hydrogen production[J]. RSC Advances, 2013, 3(43): 19820-19823.
[11] GUO Z Z, FLOREA A, JIANG M J, et al. Molecularly imprinted [28] MA X, WANG L, ZHANG Q, et al. Switching on the photocatalysis
polymer/metal organic framework based chemical sensors[J]. Coatings, of metal-organic frameworks by engineering structural defects[J].
2016, 6(4): 42. Angewandte Chemie International Edition, 2019, 58(35): 12175-
[12] HAMON L, SERRE C, DEVIC T, et al. Comparative study of 12179.
hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(Ⅴ), [29] ZHANG Y J, WEN C F, WU X F, et al. Reverse replacement in
MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room NH 2-MIL-125 with 1,4-dicarboxybenzene for enhanced photocatalytic
temperature[J]. Journal of the American Chemical Society, 2009, hydrogen generation[J]. Chemistry-A European Journal, 2022, 28(56):
131(25): 8775. 938.
[13] WANG L, FU J W, CHEN Y H, et al. Persulfate-based visible [30] MOHAMMADNEZHAD F, KAMPOURI S, WOLFF S K, et al.
photocatalysis with a novel stability enhanced Fe-based metal- Tuning the optoelectronic properties of hybrid functionalized
organic framework[J]. Journal of Solid State Chemistry, 2022, 313: MIL-125-NH 2 for photocatalytic hydrogen evolution[J]. ACS
123297. Applied Materials & Interfaces, 2021, 13(4): 5044-5051.
[14] ABDELHAMEED R M, ABU-ELGHAIT M, EL-SHAHAT M. [31] FU Y H, SUN L, YANG H, et al. Visible-light-induced aerobic
Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH 2): photocatalytic oxidation of aromatic alcohols to aldehydes over
Enhancement the biological and visible-light photocatalytic activity[J]. Ni-doped NH 2-MIL-125(Ti)[J]. Applied Catalysis B-Environmental,
Journal of Environmental Chemical Engineering, 2020, 8(5): 104107. 2016, 187: 212-217.
[15] RAN J H, CHEN H B, BI S G, et al. One-step in-situ growth of [32] CHEN X L, XIAO S N, WANG H, et al. MOFs conferred with
zeolitic imidazole frameworks-8 on cotton fabrics for photocatalysis transient metal centers for enhanced photocatalytic activity[J].
and antimicrobial activity[J]. Cellulose, 2020, 27(17): 10447-10459. Angewandte Chemie International Edition, 2020, 59(39): 17182-
[16] LOLLAR C T, PANG J D, QIN J S, et al. Thermodynamically 17186.
controlled linker installation in flexible zirconium metal-organic [33] THI H T N, THI K N T, HOANG N B, et al. Enhanced degradation
frameworks[J]. Crystal Growth & Design, 2019, 19(4): 2069-2073. of rhodamine B by metallic organic frameworks based on NH 2-
[17] LIU W H, GUO Z F, JIN Z, et al. Visible-light-driven MIL-125(Ti) under visible light[J]. Materials, 2021, 14(24): 7741.
sonophotocatalysis for enhanced Cr(Ⅵ) reduction over mixed-linker [34] FU Y H, YANG H, DU R F, et al. Enhanced photocatalytic CO 2
zirconium-porphyrin MOFs[J]. Catalysis Science & Technology, reduction over Co-doped NH 2-MIL-125(Ti) under visible light[J].
2022, 12(7): 2176-2183. RSC Advances, 2017, 7(68): 42819-42825.
[18] WANG F X (王茀学), WANG C C (王崇臣), WANG P (王鹏), et al. [35] CHEN S Y, HAI G T, GAO H Y, et al. Modulation of the charge
Syntheses and applications of UiO series of MOFs[J]. Chinese transfer behavior of Ni(Ⅱ)-doped NH 2-MIL-125(Ti): Regulation of
Journal of Inorganic Chemistry (无机化学学报), 2017, 33(5): Ni ions content and enhanced photocatalytic CO 2 reduction
713-737. performance[J]. Chemical Engineering Journal, 2021, 406: 126886
[19] ZHANG C X, LEI D, XIE C F, et al. Piezo-photocatalysis over [36] CHENG X M, WANG P, WANG S Q, et al. Ti(Ⅳ)-MOF with
metal-organic frameworks: Promoting photocatalytic activity by specific facet-Ag nanoparticle composites for enhancing the
piezoelectric effect[J]. Advanced Materials, 2021, 33(51): 2106308. photocatalytic activity and selectivity of CO 2 reduction[J]. ACS
[20] ZHU S R, LIU P F, WU M K, et al. Enhanced photocatalytic Applied Materials & Interfaces, 2022, 14(28): 3250-3259.
performance of BiOBr/NH 2-MIL-125(Ti) composite for dye degradation [37] MUELAS-RAMOS V, BELVER C, RODRIGUEZ J J, et al.
under visible light[J]. Dalton Transactions, 2016, 45(43): 17521- Synthesis of noble metal-decorated NH 2-MIL-125 titanium MOF for
17529. the photocatalytic degradation of acetaminophen under solar
[21] HU S, LIU M, GUO X W, et al. Effect of titanium ester on irradiation[J]. Separation and Purification Technology, 2021, 272:
synthesizing NH 2-MIL-125(Ti): Morphology changes from circular 118896.
plate to octahedron and rhombic dodecahedron[J]. Journal of Solid [38] ZHOU H, ZHU X D, GE P, et al. Synergistic coupling of surface
State Chemistry, 2018, 262: 237-243. plasmon resonance with metal-organic frameworks based biomimetic
[22] BAN Y J, LI Y S, LIU X L, et al. Solvothermal synthesis of Z-Scheme catalyst for enhanced photoelectrochemical water
mixed-ligand metal-organic framework ZIF-78 with controllable size splitting[J]. Applied Surface Science, 2022, 605: 154693.
and morphology[J]. Microporous and Mesoporous Materials, 2013, [39] SUN X J (孙雪娇), WANG S Q (王思琦), DONG J (董佳), et al.
173: 29-36. Construction of Ag/NH 2-MIL-125(Ti) and visible light reduction of
[23] ZHAO X X ( 赵晓霞 ).Study on photocatalytic oxidation of Cr(Ⅵ) in water[J]. Applied Chemistry (应用化学), 2019, 36(3):
cyclohexane with NH 2-MIL-125(Ti) and its composites[D]. Beijing: 314-323.
China University of Petroleum (Beijing)〔中国石油大学(北京)〕, 2018. [40] OVCHAROV M L, MISHURA A M, SHVALAGIN V V, et al.
[24] MA R Y (马蕊英), MA D (马迪), ZHAO X X (赵晓霞), et al. Semiconductor nanocatalysts for CO 2 photoconversion giving
Preparation and photocatalytic properties of NH 2-MIL-125(Ti) with organic compounds: Design and physicochemical characteristics: A
different crystal morphology[J]. Fine Chemicals (精细化工), 2019, review[J]. Theoretical and Experimental Chemistry, 2019, 55(1):
36(3): 481-486. 2-28.
[25] YANG Z H (杨哲涵), ZHANG X M (张贤明), YANG Z J (杨镇嘉), [41] KAUR M, MEHTA S K, DEVI P, et al. NH 2-MIL-125(Ti)
et al. Preparation of photocatalyst NH 2-MIL-125(Ti) and its effect on nanoparticles decorated over ZnO microrods: An efficient bifunctional
catalytic removal of NO x[J]. Journal of Chongqing Technology and material for degradation of levofloxacin and detection of Cu(Ⅱ)[J].
Business University (重庆工商大学学报), 2023, 40(1): 1-7. Journal of Alloys and Compounds, 2022, 928: 166909.
[26] FU Y H, SUN D R, CHEN Y J, et al. An amine-functionalized [42] ZHOU J, JIA Q W, WANG L Y, et al. Highly efficient and selective
titanium metal-organic framework photocatalyst with visible-light- photocatalytic CO 2 reduction using MIL-125(Ti) and based on