Page 136 - 《精细化工》2023年第9期
P. 136
·1984· 精细化工 FINE CHEMICALS 第 40 卷
electrooxidation[J]. Electrochimica Acta, 2014, 139: 42-47. catalytic activity for methanol oxidation[J]. Advanced Functional
[13] WATANABE M, MOTOO S. Electrocatalysis by ad-atoms: PartⅡ. Materials, 2018, 28(1): 1704774.
Enhancement of the oxidation of methanol on platinum by ruthenium [32] AN M C, DU L, DU C Y, et al. Pt nanoparticles supported by sulfur
ad-atoms[J]. Electroanalytical Chemistry and Interracial Electrochemistry, and phosphorus Co-doped graphene as highly active catalyst for
1975, 60(3): 267-273. acidic methanol electrooxidation[J]. Electrochimica Acta, 2018, 285:
[14] LI Z J, JIANG X, WANG X R, et al. Concave PtCo nanocrosses for 202-213.
methanol oxidation reaction[J]. Applied Catalysis B: Environmental, [33] LIU Z W, LI P, ZHAI F Q, et al. Amorphous carbon modified
2020, 277: 119135-119142. nano-sized tungsten carbide as a gas diffusion electrode catalyst for
[15] ARAMESH N, HOSEINI S J, SHAHSAVARI H R, et al. PtSn the oxygen reduction reaction[J]. RSC Advances, 2015, 5(87):
nanoalloy thin films as anode catalysts in methanol fuel cells[J]. 70743-70748.
Inorganic Chemistry 2020, 59(15): 10688-10698. [34] FAN A X, QIN C G, ZHAO R X, et al. Phosphorus-doping-tuned
[16] DU N N, WANG C M, LONG R, et al. N-doped carbon-stabilized PtNi concave nanocubes with high-index facets for enhanced
PtCo nanoparticles derived from Pt@ZIF-67: Highly active and methanol oxidation reaction[J]. Nano Research, 2022, 15(8):
durable catalysts for oxygen reduction reaction[J]. Nano Research, 6961-6968.
2017, 10(9): 3228-3237. [35] HU Y J, SHAO Q, WU P, et al. Synthesis of hollow mesoporous
[17] CHEN L, ZHOU L Z, LU H B, et al. Shape-controlled synthesis of Pt-Ni nanosphere for highly active electrocatalysis toward the
planar PtPb nanoplates for highly efficient methanol electro-oxidation methanol oxidation reaction[J]. Electrochemistry Communications,
reaction[J]. Chemical Communications, 2020, 56(64): 9138-9141. 2012, 18: 96-99.
[18] LIU A M, YANG Y N, SHI D J, et al. Theoretical study of the [36] LU S Q, LI H M, SUN J Y, et al. Promoting the methanol oxidation
mechanism of methanol oxidation on PtNi catalyst[J]. Inorganic catalytic activity by introducing surface nickel on platinum
Chemistry Communications, 2021, 123(1): 108362. nanoparticles[J]. Nano Research, 2018, 11(4): 2058-2068.
[19] XU L T, LV Y H, LI X W. N-doped carbon-stabilized Pt 3Co [37] REN Z F (任志峰), LAN Y C (蓝玉成), WANG Y (王洋). Aligned
nanoparticles as an efficient catalyst for methanol electro-oxidation[J]. carbon nanotubes: Physics, concepts, fabrication and devices[M].
Colloids and Surfaces A: Physicochemical and Engineering Aspects, Beijing: Science Press (科学出版社), 2014.
2021, 617: 126411-126418. [38] GHASEMI M, ISMAIL M, KAMARUDIN S K, et al. Carbon
[20] HUANG L, ZHANG X P, WANG Q Q, et al. Shape-control of Pt-Ru nanotube as an alternative cathode support and catalyst for microbial
nanocrystals: Tuning surface structure for enhanced electrocatalytic fuel cells[J]. Applied Energy, 2013, 102: 1050-1056.
methanol oxidation[J]. Journal of the American Chemical Society, [39] ZHANG M M, YAN Z X, XIE J M. Core/shell Ni@Pd nanoparticles
2018, 140(3): 1142-1147. supported on MWCNTs at improved electrocatalytic performance for
[21] BARONIA R, GOEL J, SINGHAL S K. High methanol electro- alcohol oxidation in alkaline media[J]. Electrochimica Acta, 2012,
oxidation using PtCo/reduced graphene oxide (rGO) anode 77: 237-243.
nanocatalysts in direct methanol fuel cell[J]. Journal of Nanoscience [40] ANTOLINI E. The oxygen reduction on Pt-Ni and Pt-Ni-M catalysts
and Nanotechnology, 2019, 19(7): 4315-4322. for low-temperature acidic fuel cells: A review[J]. International
[22] ZHANG J, YANG H Z, YANG K L, et al. Monodisperse Pt 3Fe Journal of Energy Research, 2018, 42(12): 3747-3769.
nanocubes: Synthesis, characterization, self-assembly, and electrocatalytic [41] CHEN Y Z, MA Y Y, ZHOU Y Q, et al. Enhanced methanol
activity[J]. Advanced Functional Materials, 2010, 20(21): 3727-3733. oxidation on PtNi nanoparticles supported on silane-modified
[23] HSIEH C T, LIN J Y. Fabrication of bimetallic Pt-M (M = Fe, Co, reduced graphene oxide[J]. International Journal of Hydrogen
and Ni) nanoparticle/carbon nanotube electrocatalysts for direct Energy, 2022, 47(10): 6638-6649.
methanol fuel cells[J]. Journal of Power Sources, 2009, 188(2): [42] KINOSHITA K J. Particle size effects for oxygen reduction on highly
347-352. dispersed platinum in acid electrolytes[J]. Journal of the
[24] LAMY C, LIMA A, LERHUN V, et al. Recent advances in the Electrochemical Society, 1990, 137(3): 845-848.
development of direct alcohol fuel cells (DAFC)[J]. Journal of Power [43] NESSELBERGER M, ASHTON S, MEIER J C, et al. The particle
Sources, 2002, 105(2): 283-296. size effect on the oxygen reduction reaction activity of Pt catalysts:
[25] WANG Z B, ZUO P J, WANG G J, et al. Effect of Ni on PtRu/C Influence of electrolyte and relation to single crystal models[J].
catalyst performance for ethanol electrooxidation in acidic medium Journal of the American Chemical Society, 2011, 133(43): 17428-
[J]. The Journal of Physical Chemistry C, 2008, 112(16): 6582-6587. 17433.
[26] JIANG J H, KUCERNAK A. Synthesis of highly active nanostructured [44] DING X, LI M, JIN J L, et al. Graphene aerogel supported Pt-Ni
PtRu electrocatalyst with three-dimensional mesoporous silica alloy as efficient electrocatalysts for alcohol fuel oxidation[J].
template[J]. Electrochemistry Communications, 2009, 11(3): 623-626. Chinese Chemical Letters, 2022, 33(5): 2687-2691.
[27] LIAO S J, HOLMES K A, TSAPRAILIS H, et al. High performance [45] LV Q Y, REN X F, LIU L F, et al. Theoretical investigation of
PtRuIr catalysts supported on carbon nanotubes for the anodic methanol oxidation on Pt and PtNi catalysts[J]. Ionics, 2019, 26(3):
oxidation of methanol[J]. Journal of the American Chemical Society, 1325-1336.
2006, 128(11): 3504-3505. [46] SANTIAGO J M, HERNANDEZ-PICHARDO M L, LARTUNDO-
[28] WANG D L, XIN H L L, HOVDEN R, et al. Structurally ordered ROJAS L, et al. Methanol electro-oxidation on Pt-carbon vulcan
intermetallic platinum-cobalt core-shell nanoparticles with enhanced catalyst modified with WO X nanostructures: An approach to the
activity and stability as oxygen reduction electrocatalysts[J]. Nature reaction sequence using DEMS[J]. Industrial & Engineering
Materials, 2012, 12(1): 81-87. Chemistry Research, 2016, 56(1): 161-167.
[29] ZHOU K L, WANG C H, WANG Z L, et al. Seamlessly conductive [47] CHEN X, LU K C, LIN D H, et al. Hierarchical porous tubular
Co(OH) 2 tailored atomically dispersed Pt electrocatalyst with a biochar based sensor for detection of trace lead (Ⅱ)[J]. Electroanalysis,
hierarchical nanostructure for an efficient hydrogen evolution reaction[J]. 2020, 33(2): 473-482.
Energy & Environmental Science, 2020, 13(9): 3082-3092. [48] GARCIA G, KOPER M. Stripping voltammetry of carbon monoxide
[30] ZHAO K, QIAN T J, BAI X Y, et al. PtNi multi-branched oxidation on stepped platinum single-crystal electrodes in alkaline
nanostructures as efficient bifunctional electrocatalysts for fuel cell solution[J]. Physical Chemistry Chemical Physics, 2008, 10(25):
[J]. Journal of Physics D: Applied Physics, 2022, 55(34): 344001. 3802-3811.
[31] YANG P P, YUAN X L, HU H C, et al. Solvothermal synthesis of
alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced (下转第 2063 页)