Page 136 - 《精细化工》2023年第9期
P. 136

·1984·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 electrooxidation[J]. Electrochimica Acta, 2014, 139: 42-47.   catalytic activity for methanol oxidation[J]. Advanced Functional
            [13]  WATANABE M,  MOTOO S. Electrocatalysis by  ad-atoms: PartⅡ.   Materials, 2018, 28(1): 1704774.
                 Enhancement of the oxidation of methanol on platinum by ruthenium   [32]  AN M C, DU L, DU C Y, et al. Pt nanoparticles supported by sulfur
                 ad-atoms[J]. Electroanalytical Chemistry and Interracial Electrochemistry,   and phosphorus Co-doped graphene as highly active catalyst for
                 1975, 60(3): 267-273.                             acidic methanol electrooxidation[J]. Electrochimica Acta, 2018, 285:
            [14]  LI Z J, JIANG X, WANG X R, et al. Concave PtCo nanocrosses for   202-213.
                 methanol oxidation reaction[J]. Applied Catalysis B: Environmental,   [33]  LIU Z W,  LI P,  ZHAI F Q,  et al. Amorphous carbon modified
                 2020, 277: 119135-119142.                         nano-sized tungsten carbide as a gas diffusion electrode catalyst for
            [15]  ARAMESH N,  HOSEINI S J, SHAHSAVARI H  R,  et al. PtSn   the oxygen reduction reaction[J]. RSC Advances, 2015, 5(87):
                 nanoalloy thin films as anode catalysts in methanol fuel cells[J].   70743-70748.
                 Inorganic Chemistry 2020, 59(15): 10688-10698.   [34]  FAN A X, QIN C  G,  ZHAO R X,  et al. Phosphorus-doping-tuned
            [16]  DU N N, WANG C M, LONG R, et al. N-doped carbon-stabilized   PtNi concave nanocubes with high-index  facets for  enhanced
                 PtCo nanoparticles derived from Pt@ZIF-67: Highly active and   methanol oxidation reaction[J]. Nano Research, 2022, 15(8):
                 durable catalysts for oxygen reduction reaction[J]. Nano Research,   6961-6968.
                 2017, 10(9): 3228-3237.                       [35]  HU Y  J,  SHAO Q, WU  P,  et al. Synthesis of hollow mesoporous
            [17]  CHEN L, ZHOU L Z, LU H B, et al. Shape-controlled synthesis of   Pt-Ni  nanosphere for  highly active electrocatalysis toward the
                 planar PtPb nanoplates for highly  efficient  methanol  electro-oxidation   methanol oxidation reaction[J]. Electrochemistry  Communications,
                 reaction[J]. Chemical Communications, 2020, 56(64): 9138-9141.   2012, 18: 96-99.
            [18]  LIU A M,  YANG  Y N, SHI D J,  et al. Theoretical study of the   [36]  LU S Q, LI H M, SUN J Y, et al. Promoting the methanol oxidation
                 mechanism of methanol oxidation on PtNi catalyst[J]. Inorganic   catalytic  activity  by introducing surface nickel on platinum
                 Chemistry Communications, 2021, 123(1): 108362.   nanoparticles[J]. Nano Research, 2018, 11(4): 2058-2068.
            [19]  XU  L  T, LV Y  H, LI X  W. N-doped carbon-stabilized Pt 3Co   [37]  REN Z F (任志峰), LAN Y C (蓝玉成), WANG Y (王洋). Aligned
                 nanoparticles as an  efficient catalyst  for methanol electro-oxidation[J].   carbon nanotubes:  Physics, concepts,  fabrication and devices[M].
                 Colloids and Surfaces A: Physicochemical and Engineering Aspects,   Beijing: Science Press (科学出版社), 2014.
                 2021, 617: 126411-126418.                     [38]  GHASEMI M, ISMAIL M,  KAMARUDIN S K,  et al. Carbon
            [20]  HUANG L, ZHANG X P, WANG Q Q, et al. Shape-control of Pt-Ru   nanotube as an alternative cathode support and catalyst for microbial
                 nanocrystals: Tuning surface structure for enhanced electrocatalytic   fuel cells[J]. Applied Energy, 2013, 102: 1050-1056.
                 methanol oxidation[J]. Journal of the American Chemical Society,   [39]  ZHANG M M, YAN Z X, XIE J M. Core/shell Ni@Pd nanoparticles
                 2018, 140(3): 1142-1147.                          supported on MWCNTs at improved electrocatalytic performance for
            [21]  BARONIA R, GOEL J, SINGHAL  S K. High  methanol electro-   alcohol oxidation in alkaline  media[J]. Electrochimica Acta, 2012,
                 oxidation using  PtCo/reduced graphene oxide (rGO) anode   77: 237-243.
                 nanocatalysts in direct methanol fuel cell[J]. Journal of Nanoscience   [40]  ANTOLINI E. The oxygen reduction on Pt-Ni and Pt-Ni-M catalysts
                 and Nanotechnology, 2019, 19(7): 4315-4322.       for low-temperature acidic fuel cells: A review[J]. International
            [22]  ZHANG J, YANG H Z,  YANG K L,  et al. Monodisperse Pt 3Fe   Journal of Energy Research, 2018, 42(12): 3747-3769.
                 nanocubes: Synthesis, characterization, self-assembly, and electrocatalytic   [41]  CHEN Y Z, MA Y  Y, ZHOU Y Q,  et al. Enhanced  methanol
                 activity[J]. Advanced Functional Materials, 2010, 20(21): 3727-3733.   oxidation on PtNi nanoparticles supported  on  silane-modified
            [23]  HSIEH C T, LIN J Y. Fabrication of bimetallic Pt-M (M = Fe, Co,   reduced graphene oxide[J]. International Journal of Hydrogen
                 and Ni)  nanoparticle/carbon nanotube electrocatalysts  for  direct   Energy, 2022, 47(10): 6638-6649.
                 methanol fuel cells[J]. Journal of Power Sources, 2009, 188(2):   [42]  KINOSHITA K J. Particle size effects for oxygen reduction on highly
                 347-352.                                          dispersed platinum in acid electrolytes[J]. Journal of the
            [24]  LAMY  C, LIMA A, LERHUN V,  et al. Recent advances in the   Electrochemical Society, 1990, 137(3): 845-848.
                 development of direct alcohol fuel cells (DAFC)[J]. Journal of Power   [43]  NESSELBERGER M, ASHTON S, MEIER J C, et al. The particle
                 Sources, 2002, 105(2): 283-296.                   size effect on the oxygen reduction reaction activity of Pt catalysts:
            [25]  WANG Z B, ZUO  P J, WANG G J, et al. Effect of Ni on PtRu/C   Influence of electrolyte and relation to single crystal models[J].
                 catalyst performance for ethanol electrooxidation in acidic  medium   Journal of the American Chemical Society, 2011, 133(43): 17428-
                 [J]. The Journal of Physical Chemistry C, 2008, 112(16): 6582-6587.   17433.
            [26]  JIANG J H, KUCERNAK A. Synthesis of highly active nanostructured   [44]  DING X, LI M, JIN J L,  et al. Graphene aerogel supported Pt-Ni
                 PtRu electrocatalyst with three-dimensional mesoporous silica   alloy as efficient electrocatalysts for alcohol fuel oxidation[J].
                 template[J]. Electrochemistry Communications, 2009, 11(3): 623-626.   Chinese Chemical Letters, 2022, 33(5): 2687-2691.
            [27]  LIAO S J, HOLMES K A, TSAPRAILIS H, et al. High performance   [45]  LV  Q Y, REN  X F,  LIU L  F,  et al.  Theoretical investigation of
                 PtRuIr catalysts supported on carbon nanotubes for the anodic   methanol oxidation on Pt and PtNi catalysts[J]. Ionics, 2019, 26(3):
                 oxidation of methanol[J]. Journal of the American Chemical Society,   1325-1336.
                 2006, 128(11): 3504-3505.                     [46]  SANTIAGO J M, HERNANDEZ-PICHARDO M L, LARTUNDO-
            [28]  WANG D L, XIN H L L, HOVDEN R,  et al. Structurally ordered   ROJAS L,  et al.  Methanol  electro-oxidation on Pt-carbon vulcan
                 intermetallic platinum-cobalt core-shell nanoparticles with enhanced   catalyst modified  with  WO X  nanostructures:  An approach to the
                 activity and stability as oxygen reduction electrocatalysts[J]. Nature   reaction sequence using DEMS[J]. Industrial & Engineering
                 Materials, 2012, 12(1): 81-87.                    Chemistry Research, 2016, 56(1): 161-167.
            [29]  ZHOU K L, WANG C H, WANG Z L, et al. Seamlessly conductive   [47]  CHEN X, LU K  C, LIN D H,  et al. Hierarchical porous tubular
                 Co(OH) 2 tailored  atomically dispersed Pt electrocatalyst with a   biochar based sensor for detection of trace lead (Ⅱ)[J]. Electroanalysis,
                 hierarchical nanostructure for an efficient hydrogen evolution reaction[J].   2020, 33(2): 473-482.
                 Energy & Environmental Science, 2020, 13(9): 3082-3092.   [48]  GARCIA G, KOPER M. Stripping voltammetry of carbon monoxide
            [30]  ZHAO K, QIAN  T J, BAI X Y,  et al. PtNi  multi-branched   oxidation on stepped platinum single-crystal electrodes in alkaline
                 nanostructures as efficient bifunctional electrocatalysts for fuel cell   solution[J]. Physical Chemistry Chemical Physics, 2008, 10(25):
                 [J]. Journal of Physics D: Applied Physics, 2022, 55(34): 344001.   3802-3811.
            [31]  YANG P P, YUAN X L, HU H C, et al. Solvothermal synthesis of
                 alloyed PtNi colloidal nanocrystal clusters (CNCs) with  enhanced           (下转第 2063 页)
   131   132   133   134   135   136   137   138   139   140   141