Page 154 - 《精细化工》2023年第9期
P. 154
·2002· 精细化工 FINE CHEMICALS 第 40 卷
nanoporous thin films on nickel foil for efficient water splitting[J]. [23] LIU X L, WANG P, ZHANG Q Q, et al. Synthesis of MoS 2/Ni 3S 2
Applied Catalysis B: Environmental, 2019, 243: 693-702. heterostructure for efficient electrocatalytic hydrogen evolution
[15] JIANG N, BOGOEV L, POPOVA M, et al. Electrodeposited nickel- reaction through optimizing the sulfur sources selection[J]. Applied
sulfide films as competent hydrogen evolution catalysts in neutral Surface Science, 2018, 459: 422-429.
water[J]. Journal of Materials Chemistry A, 2014, 2(45): 19407-19414. [24] YIN J, FAN Q H, LI Y X, et al. Ni-C-N nanosheets as catalyst for
[16] GUO R, HE Y, WANG R C, et al. Uncovering the role of Ag in layer- hydrogen evolution reaction[J]. Journal of the American Chemical
alternating Ni 3S 2/Ag/Ni 3S 2 as an electrocatalyst with enhanced OER Society, 2016, 138(44): 14546-14549.
performance[J]. Inorganic Chemistry Frontiers, 2020, 7(19): 3627-3635. [25] DONG W X, ZHOU H B, MAO B D, et al. Efficient MOF-derived
[17] DU X Q, MA G Y, ZHANG X S. Cobalt and nitrogen Co-doped V-Ni 3S 2 nanosheet arrays for electrocatalytic overall water splitting
Ni 3S 2 nanoflowers on nickel foam as high-efficiency electrocatalysts in alkali[J]. International Journal of Hydrogen Energy, 2021, 46(18):
for overall water splitting in alkaline media[J]. Dalton Transactions, 10773-10782.
2021, 50(25): 8955-8962. [26] WEI X L (卫学玲), ZOU X Y (邹祥宇), BAO W W (包维维), et al.
[18] BAO W W, XIAO L, ZHANG J J, et al. Interface engineering of FeOOH@CoNi-LDH@NF prepared by fast interface engineering for
NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts efficient oxygen evolution reaction[J]. Fine Chemicals (精细化工),
for oxygen evolution reaction in alkaline conditions[J]. Chemical 2022, 39(3): 577-583.
Communications, 2020, 56(65): 9360-9363. [27] OLIVEIRA F M, PAŠTIKA J, MAZÁNEK V, et al. Cobalt
[19] CHEN L, REN J T, YUAN Z Y. Interface engineering for boosting phosphorous trisulfide as a high-performance electrocatalyst for the
electrocatalytic performance of CoP-Co 2P polymorphs for all-pH oxygen evolution reaction[J]. ACS Applied Materials & Interfaces,
hydrogen evolution reaction and alkaline overall water splitting[J]. 2021, 13(20): 23638-23646.
Science China Materials, 2022, 65(9): 2433-2444. [28] WANG D Z, XIE Y Y, WU Z Z. Amorphous phosphorus-doped MoS 2
[20] LI Y B, ZHAO C. Iron-doped nickel phosphate as synergistic catalyst for efficient hydrogen evolution reaction[J]. Nanotechnology,
electrocatalyst for water oxidation[J]. Chemistry of Materials, 2016, 2019, 30(20): 205401.
28(16): 5659-5666. [29] CAO J M, ZHOU J, ZHANG Y F, et al. Dominating role of aligned
[21] WANG H H (王虎虎), AI T T (艾桃桃), BAO W W (包维维). MoS 2/Ni 3S 2 nanoarrays supported on three-dimensional Ni foam with
One-step hydrothermal preparation and oxygen evolution behavior of hydrophilic interface for highly enhanced hydrogen evolution reaction[J].
multilevel structure FeS@Ni 3S 2/NF catalytic electrode[J]. The ACS Applied Materials & Interfaces, 2018, 10(2): 1752-1760.
Chinese Journal of Nonferrous Metals (中国有色金属学报), 2022, [30] WU Z X, GUO J P, WANG J, et al. Hierarchically porous
32(9): 2691-2702. electrocatalyst with vertically aligned defect-rich CoMoS nanosheets
[22] MA X, CHEN W R, LI Q, et al. Nitrogen-doped hierarchical for the hydrogen evolution reaction in an alkaline medium[J]. ACS
heterostructured aerophobic MoS x/Ni 3S 2 nanowires by one-pot synthesis: Applied Materials & Interfaces, 2017, 9(6): 5288-5294.
System engineering and synergistic effect in electrocatalysis of [31] WANG H H, AI T T, BAO W W, et al. Regulating the electronic
hydrogen evolution reaction[J]. Energy & Environmental Materials, structure of Ni 3S 2 nanorods by heteroatom vanadium doping for high
2021, 4(4): 658-663. electrocatalytic performance[J]. Electrochimica Acta, 2021, 395: 139180.
(上接第 1975 页) 2006, 39(S1): 20-24.
[18] GUO C J (郭朝江), ZHANG L (张兰), WANG C (王成), et al.
[11] WU Y J (吴远杰), WANG X Y (王向阳), CHEN S X (陈少欣). Influence of decanoic acid sustained-release particles on daptomycin
Mutation breeding and fed-batch fementation for daptoinycin fermentation process of Streptomyces roseosporus[J]. Chinese Journal
production[J]. Chinese Journal of Phamaceuticals (中国医药工业杂 of Phamaceuticals (中国医药工业杂志), 2013, 44(3): 238-241.
志), 2013, 44(9): 864-867. [19] LEE S K, HONG R K, JIN Y Y, et al. Improvement of daptomycin
[12] SHI Q Q (施巧琴), WU S G (吴松刚). Industrial microbial breeding production via increased resistance to decanoic acid in Streptomyces
science[M]. Beijing: Science press (科学出版社), 2005: 143-154. roseosporus[J]. Journal of Bioscience and Bioengineering, 2016,
[13] XI Z W (席志文), HUANG L N (黄林娜), ZHAI Y C (翟一畅), 122(4): 427-433.
et al. Sequential mutagenesis treatment with atmospheric and room [20] ZHOU J (周剑), ZHANG Y (张引). Precursor resistance screening
temperature plasma and diethyl sulfate for enhanced microbial on mutation breeding and fed-batch fermentation for daptomycin
production of ε-poly-L-lysine[J]. Food Science (食品科学), 2020, production[J]. Chinese Journal of Antibiotics (中国抗生素杂志),
41(14): 131-137. 2018, 43(7): 817-823.
[14] XU J B (徐加兵), WEI X D (魏晓东), NA K (那可), et al. [21] YAO L H (姚立虎), XU Q (徐茜). Simplified study on determination
Mutagenesis breeding and optimization for high production of of total sugar content in food by anthrone colorimetry[J]. The Food
bacitracin by Bacillus licheniformis[J]. Chinese Journal of Phamaceuticals Industry (食品工业), 1992, (3): 40-42.
(中国医药工业杂志), 2013, 44(5): 446-448, 452. [22] XIE Z P (谢志鹏), XU Z N (徐志南), ZHENG J M (郑建明), et al.
[15] ZHANG H Y (张昊月). Optimization of fermentation medium and Determination of ammonium nitrogen in fermentation broth through
strain breeding for titer improvement of daptomycin by Streptomyces indophenol blue reaction[J]. Journal of Zhejiang University (Engineering
coelicolor[D]. Baoding: Hebei University (河北大学), 2021. Science) (浙江大学学报: 工学版), 2005, 39(3): 123-125, 130.
[16] CHEN G S (陈国胜), CHEN K J (陈珂君). Analysis of improving [23] XIONG J C (熊建春). Screening of ester-producing yeast of cane
production process of daptomycin by precursor oriented method[J]. whisky and study on its fermentative process[D]. Guangzhou: South
Guangdong Chemical Industry (广东化工), 2018, 45(16): 112-113. China University of Technology (华南理工大学), 2010.
[17] LU W Y (卢文玉), WEN J P (闻建平), FAN J H (范晶华), et al. [24] BORBA M P, BALLARINI A E, PAULO J, et al. Evaluation of
Fed-batch fermentative production of daptomycin by decanoic acid BOX-PCR and REP-PCR as molecular typing tools for antarctic
resistance mutant[J]. Journal of Tianjin University (天津大学学报), Streptomyces[J]. Current Microbiology, 2020, 77(11): 3573-3581.