Page 154 - 《精细化工》2023年第9期
P. 154

·2002·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 nanoporous thin films on nickel foil for efficient water splitting[J].   [23]  LIU X L, WANG P, ZHANG Q Q, et al. Synthesis of MoS 2/Ni 3S 2
                 Applied Catalysis B: Environmental, 2019, 243: 693-702.   heterostructure for efficient electrocatalytic hydrogen evolution
            [15]  JIANG N, BOGOEV L, POPOVA M, et al. Electrodeposited nickel-   reaction through optimizing the sulfur sources selection[J]. Applied
                 sulfide films as competent hydrogen  evolution catalysts in neutral   Surface Science, 2018, 459: 422-429.
                 water[J]. Journal of Materials Chemistry A, 2014, 2(45): 19407-19414.   [24]  YIN J, FAN Q H, LI Y X, et al. Ni-C-N nanosheets as catalyst for
            [16]  GUO R, HE Y, WANG R C, et al. Uncovering the role of Ag in layer-   hydrogen evolution reaction[J]. Journal of the American  Chemical
                 alternating Ni 3S 2/Ag/Ni 3S 2 as an electrocatalyst with enhanced OER   Society, 2016, 138(44): 14546-14549.
                 performance[J]. Inorganic Chemistry Frontiers, 2020, 7(19): 3627-3635.   [25]  DONG W X, ZHOU H B, MAO B D, et al. Efficient MOF-derived
            [17]  DU X Q, MA G  Y, ZHANG X S.  Cobalt and nitrogen Co-doped   V-Ni 3S 2 nanosheet arrays for electrocatalytic overall water splitting
                 Ni 3S 2 nanoflowers on nickel foam as high-efficiency electrocatalysts   in alkali[J]. International Journal of Hydrogen Energy, 2021, 46(18):
                 for overall water splitting in alkaline media[J]. Dalton Transactions,   10773-10782.
                 2021, 50(25): 8955-8962.                      [26]  WEI X L (卫学玲), ZOU X Y (邹祥宇), BAO W W (包维维), et al.
            [18]  BAO W W, XIAO L,  ZHANG J J,  et al. Interface engineering of   FeOOH@CoNi-LDH@NF prepared by fast interface engineering for
                 NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts   efficient  oxygen evolution reaction[J].  Fine Chemicals (精细化工),
                 for oxygen evolution reaction in alkaline conditions[J]. Chemical   2022, 39(3): 577-583.
                 Communications, 2020, 56(65): 9360-9363.      [27]  OLIVEIRA F M, PAŠTIKA J,  MAZÁNEK V,  et al. Cobalt
            [19]  CHEN L, REN J T, YUAN Z Y. Interface engineering for boosting   phosphorous trisulfide as a high-performance electrocatalyst for the
                 electrocatalytic performance of CoP-Co 2P polymorphs for all-pH   oxygen evolution reaction[J]. ACS Applied Materials & Interfaces,
                 hydrogen evolution reaction and alkaline overall water splitting[J].   2021, 13(20): 23638-23646.
                 Science China Materials, 2022, 65(9): 2433-2444.   [28]  WANG D Z, XIE Y Y, WU Z Z. Amorphous phosphorus-doped MoS 2
            [20]  LI Y B, ZHAO  C. Iron-doped nickel phosphate as  synergistic   catalyst for efficient hydrogen evolution reaction[J]. Nanotechnology,
                 electrocatalyst for water oxidation[J]. Chemistry of Materials, 2016,   2019, 30(20): 205401.
                 28(16): 5659-5666.                            [29]  CAO J M, ZHOU J, ZHANG Y F, et al. Dominating role of aligned
            [21]  WANG H  H (王虎虎),  AI T T  (艾桃桃),  BAO W W  (包维维).   MoS 2/Ni 3S 2 nanoarrays supported on three-dimensional Ni foam with
                 One-step hydrothermal preparation and oxygen evolution behavior of   hydrophilic interface for highly enhanced hydrogen evolution reaction[J].
                 multilevel structure FeS@Ni 3S 2/NF catalytic electrode[J]. The   ACS Applied Materials & Interfaces, 2018, 10(2): 1752-1760.
                 Chinese Journal of Nonferrous Metals (中国有色金属学报), 2022,   [30]  WU Z X, GUO  J P, WANG J,  et al. Hierarchically porous
                 32(9): 2691-2702.                                 electrocatalyst with vertically aligned defect-rich CoMoS nanosheets
            [22]  MA X, CHEN W R,  LI Q,  et al. Nitrogen-doped hierarchical   for the hydrogen evolution reaction in an alkaline medium[J]. ACS
                 heterostructured aerophobic MoS x/Ni 3S 2 nanowires by one-pot synthesis:   Applied Materials & Interfaces, 2017, 9(6): 5288-5294.
                 System engineering and synergistic effect in electrocatalysis of   [31]  WANG  H H, AI T T, BAO W W,  et al. Regulating the electronic
                 hydrogen evolution reaction[J]. Energy & Environmental Materials,   structure of Ni 3S 2 nanorods by heteroatom vanadium doping for high
                 2021, 4(4): 658-663.                              electrocatalytic performance[J]. Electrochimica Acta, 2021, 395: 139180.




            (上接第 1975 页)                                           2006, 39(S1): 20-24.
                                                               [18]  GUO C J (郭朝江), ZHANG  L (张兰), WANG C (王成),  et al.
            [11]  WU Y J (吴远杰), WANG X Y (王向阳), CHEN S X (陈少欣).    Influence of decanoic acid sustained-release particles on daptomycin
                 Mutation breeding and fed-batch fementation for daptoinycin   fermentation process of Streptomyces roseosporus[J]. Chinese Journal
                 production[J]. Chinese Journal of Phamaceuticals (中国医药工业杂  of Phamaceuticals (中国医药工业杂志), 2013, 44(3): 238-241.
                 志), 2013, 44(9): 864-867.                     [19]  LEE S K, HONG R K, JIN Y Y, et al. Improvement of daptomycin
            [12]  SHI Q Q (施巧琴), WU S G (吴松刚). Industrial microbial breeding   production via increased resistance to decanoic acid in Streptomyces
                 science[M]. Beijing: Science press (科学出版社), 2005: 143-154.   roseosporus[J]. Journal of Bioscience and Bioengineering, 2016,
            [13]  XI Z W (席志文), HUANG  L N (黄林娜), ZHAI Y C  (翟一畅),   122(4): 427-433.
                 et al. Sequential mutagenesis treatment with atmospheric and room   [20]  ZHOU J (周剑), ZHANG Y (张引). Precursor resistance screening
                 temperature plasma and diethyl sulfate for enhanced  microbial   on mutation breeding and  fed-batch fermentation for  daptomycin
                 production of  ε-poly-L-lysine[J]. Food Science (食品科学), 2020,   production[J]. Chinese Journal of Antibiotics (中国抗生素杂志),
                 41(14): 131-137.                                  2018, 43(7): 817-823.
            [14]  XU J  B (徐加兵),  WEI X D (魏晓东), NA  K (那可),  et al.   [21]  YAO L H (姚立虎), XU Q (徐茜). Simplified study on determination
                 Mutagenesis breeding  and optimization for  high production  of   of total sugar content in food by anthrone colorimetry[J]. The Food
                 bacitracin by Bacillus licheniformis[J]. Chinese Journal of Phamaceuticals   Industry (食品工业), 1992, (3): 40-42.
                 (中国医药工业杂志), 2013, 44(5): 446-448, 452.        [22]  XIE Z P (谢志鹏), XU Z N (徐志南), ZHENG J M (郑建明), et al.
            [15]  ZHANG H  Y (张昊月). Optimization of fermentation medium and   Determination of ammonium nitrogen in fermentation broth through
                 strain breeding for titer improvement of daptomycin by Streptomyces   indophenol blue reaction[J]. Journal of Zhejiang University (Engineering
                 coelicolor[D]. Baoding: Hebei University (河北大学), 2021.   Science) (浙江大学学报:  工学版), 2005, 39(3): 123-125, 130.
            [16]  CHEN G S (陈国胜), CHEN K J (陈珂君). Analysis of improving   [23]  XIONG J C (熊建春). Screening of ester-producing yeast of cane
                 production process of daptomycin by precursor oriented method[J].   whisky and study on its fermentative process[D]. Guangzhou: South
                 Guangdong Chemical Industry (广东化工), 2018, 45(16): 112-113.   China University of Technology (华南理工大学), 2010.
            [17]  LU W  Y (卢文玉), WEN J P (闻建平), FAN J H (范晶华),  et al.   [24]  BORBA M P, BALLARINI  A E, PAULO J,  et al. Evaluation of
                 Fed-batch fermentative production of daptomycin by decanoic acid   BOX-PCR  and REP-PCR as  molecular typing tools for antarctic
                 resistance mutant[J]. Journal of Tianjin University (天津大学学报),   Streptomyces[J]. Current Microbiology, 2020, 77(11): 3573-3581.
   149   150   151   152   153   154   155   156   157   158   159