Page 85 - 《精细化工》2023年第9期
P. 85
第 9 期 张直峰,等: 超薄氧掺杂 g-C 3 N 4 纳米片的制备及其光催化性能 ·1933·
103: 232-243. dimensional g-C 3N 4 photocatalyst for enhanced photocatalytic H 2
[5] YAO C K, YUAN A, WANG Z S, et al. Amphiphilic two-dimensional evolution activity[J]. Journal of Colloid and Interface Science, 2021,
graphitic carbon nitride nanosheets for visible-light-driven phase- 581: 159-166.
boundary photocatalysis[J]. Journal of Materials Chemistry A, 2019, [24] MEDEIROS T V D, PORTO A O, BICALHO H A, et al. The effects
7(21): 13071-13079. of chemical and thermal exfoliation on the physico-chemical and
[6] ZHU M S, ZHAI C Y, SUN M, et al. Ultrathin graphitic C 3N 4 optical properties of carbon nitrides[J]. Journal of Materials
nanosheet as a promising visible-light-activated support for boosting Chemistry C, 2021, 9(24): 7622-7631.
photoelectrocatalytic methanol oxidation[J]. Applied Catalysis B: [25] WEN J Q, ZHANG S Y, LIU Y G, et al. Formic acid assisted
Environmental, 2017, 203: 108-115. fabrication of oxygen-doped rod-like carbon nitride with improved
[7] YANG S B, GONG Y J, ZHANG J S, et al. Exfoliated graphitic photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface
carbon nitride nanosheets as efficient catalysts for hydrogen Science, 2022, 624: 338-347.
evolution under visible light[J]. Advanced Materials, 2013, 25(17): [26] MA L T, FAN H Q, LI M M, et al. A simple melamine-assisted
2452-2456. exfoliation of polymeric graphitic carbon nitrides for highly efficient
[8] MA F K, SUN C L, SHAO Y L, et al. One-step exfoliation and hydrogen production from water under visible light[J]. Journal of
fluorination of g-C 3N 4 nanosheets with enhanced photocatalytic Materials Chemistry A, 2015, 3(44): 22404-22412.
activities[J]. New Journal of Chemistry, 2017, 41(8): 3061-3067. [27] BAI J R, WANG Z L, ZHOU P, et al. Rapid thermal surface
[9] YUAN Y J, SHEN Z K, WU S T, et al. Liquid exfoliation of g-C 3N 4 engineering of g-C 3N 4 for efficient hydrogen evolution[J]. Applied
nanosheets to construct 2D-2D MoS 2/g-C 3N 4 photocatalyst for Surface Science, 2021, 539: 148308.
enhanced photocatalytic H 2 production activity[J]. Applied Catalysis [28] WANG L Y, HONG Y Z, LIU E L, et al. A bottom-up acidification
B: Environmental, 2019, 246: 120-128. strategy engineered ultrathin g-C 3N 4 nanosheets towards boosting
[10] WANG K C, SONG S W, ZHANG Q F, et al. Fabrication of photocatalytic hydrogen evolution[J]. Carbon, 2020, 163: 234-243.
protonated g-C 3N 4 nanosheets as promising proton conductive [29] BABU P, MOHANTY S, NAIK B, et al. Synergistic effects effects of
materials[J]. Chemical Communications, 2019, 55(51): 7414-7417. boron and sulfur co-doping into graphitic carbon nitride framework for
[11] YU T, HU Z M, WANG H M, et al. Enhanced visible-light-driven enhanced photocatalytic activity in visible light driven hydrogen
hydrogen evolution of ultrathin narrow-band-gap g-C 3N 4 nanosheets[J]. generation[J]. ACS Applied Energy Materials, 2018, 1(11): 5936-5947.
Journal of Materials Science, 2020, 55(5): 2118-2128. [30] MA L (马琳), ZHAO Y F (赵艳锋), ZHANG C L (张春龙), et al.
[12] ZHANG J H, HOU Y J, WANG S J, et al. A facile method for Synthesis and photocatalytic performance of sulfate modified
scalable synthesis of ultrathin g-C 3N 4 nanosheets for efficient graphitic carbon nitride[J]. Fine Chemicals (精细化工), 2019, 36(5):
hydrogen production[J]. Journal of Materials Chemistry A, 2018, 898-904.
6(37): 18252-18257. [31] WOOD P M. The potential diagram for oxygen at pH 7[J].
[13] GAO S Y, PAN L L, KONG W G, et al. Engineering in-plane Biochemical Journal, 1988, 253(1): 287-289.
π-conjugated structures in ultrathin g-C 3N 4 nanosheets for enhanced [32] CIBULKA R. Strong chemical reducing agents produced by light[J].
photocatalytic reduction performance[J]. Applied Surface Science, Nature, 2020, 580(7801): 31-32.
2023, 610: 155574. [33] MARTHA S, MANSINGH S, PARIDA K M, et al. Exfoliated metal
[14] YU W W (于伟伟) . Construction of graphitic carbon nitrides and free homojunction photocatalyst prepared by a biomediated route for
their photocatalytic performance for hydrogen production from water enhanced hydrogen evolution and Rhodamine B degradation[J].
splitting[D]. Dalian: Dalian University of Technology (大连理工大 Materials Chemistry Frontiers, 2017, 1(8): 1641-1653.
学), 2022. [34] LIU Y Y, ZHANG Y, SHI L. One-step synthesis of S-doped and
[15] YANG B (杨斌). Structure control and photocatalytic performance nitrogen-defects co-modified mesoporous g-C 3N 4 with excellent
study of ultrathin graphitic carbon nitride[D]. Shihezi: Shihezi photocatalytic hydrogen production efficiency and degradation
University (石河子大学), 2022. ability[J]. Colloids and Surfaces A: Physicochemical and Engineering
[16] DUAN X Y (段贤扬), XU J H (徐继红), HE M Q (何梦奇), et al. Aspects, 2022, 641: 128577.
Preparation of 2D graphite phase carbon nitride nanosheets and their [35] CHEN K, ZHANG X M, YANG X F, et al. Electronic structure of
photocatalytic performance[J]. Fine Chemicals (精细化工), 2021, heterojunction MoO 2/g-C 3N 4 catalyst for oxidative desulfurization[J].
38(1): 83-90. Applied Catalysis B: Environmental, 2018, 238: 263-273.
[17] JIA X W, LI Y F, LIU X C, et al. Highly crystalline sulfur and [36] WEN J, ZHANG S, LIU Y, et al. Formic acid assisted fabrication of
oxygen co-doped g-C 3N 4 nanosheets as an advanced photocatalyst Oxygen-doped rod-like carbon nitride with improved photocatalytic
for efficient hydrogen generation[J]. Catalysis Science & Technology, hydrogen evolution[J]. Journal of Colloid and Interface Science,
2022, 12(16): 5136-5142. 2022, 624: 338-347.
[18] GUO H, SHU Z, CHEN D H, et al. One-step synthesis of S-doped [37] SAKA C. Surface modification with oxygen doping of g-C 3N 4
g-C 3N 4 nanosheets for improved visible-light photocatalytic hydrogen nanoparticles by carbon vacancy for efficient dehydrogenation of
evolution[J]. Chemical Physics, 2020, 533: 110714. sodium borohydride in methanol[J]. Fuel, 2022, 310: 122444.
[19] LIU J X (刘金香), CHEN Z G (陈子庚), XIE S B (谢水波), et al. [38] ZHU H, JIANG R, XIAO L, CHANG Y, et al. Photocatalytic
Adsorption properties and mechanism of U( Ⅵ ) onto oxidized decolorization and degradation of Congo Red on innovative crosslinked
graphitic carbon nitride nanomaterials[J]. Fine Chemicals (精细化 chitosan/nano-CdS composite catalyst under visible light irradiation[J].
工), 2019, 36(7): 1446-1452. Journal of Hazardous Materials, 2009, 169(1): 933-940.
[20] DU X R, ZOU G J, WANG Z H, et al. A scalable chemical route to [39] PATTNAIK S P, BEVHERA A, MARTHA S, et al. Synthesis,
soluble acidified graphitic carbon nitride: An ideal precursor for photoelectrochemical properties and solar light-induced photocatalytic
isolated ultrathin g-C 3N 4 nanosheets[J]. Nanoscale, 2015, 7(19): activity of bismuth ferrite nanoparticles[J]. Journal of Nanoparticle
8701-8706. Research, 2018, 20(1): 10.
[21] BAI J R, WANG Z L, ZHOU P, et al. Rapid thermal surface [40] JO W K, KUMAR S, ISAACS M A, et al. Cobalt promoted TiO 2/GO
engineering of g-C 3N 4 for efficient hydrogen evolution[J]. Applied for the photocatalytic degradation of oxytetracycline and Congo
Surface Science, 2021, 539: 148308. Red[J]. Applied Catalysis B: Environmental, 2017, 201: 159-168.
[22] LI J H, SHEN B, HONG Z H, et al. A facile approach to synthesize [41] KUMAR A, SINGH S, KHANUJA M. A comparative photocatalytic
novel oxygen-doped g-C 3N 4 with superior visible-light photoreactivity[J]. study of pure and acid-etched template free graphitic C 3N 4 on
Chemical Communications, 2012, 48(98): 12017-12019. different dyes: An investigation on the influence of surface
[23] HAN C C, SU P F, TAN B, et al. Defective ultra-thin two- modifications[J]. Materials Chemistry and Physics, 2020, 243: 122402.