Page 85 - 《精细化工》2023年第9期
P. 85

第 9 期                   张直峰,等:  超薄氧掺杂 g-C 3 N 4 纳米片的制备及其光催化性能                           ·1933·


                 103: 232-243.                                     dimensional g-C 3N 4 photocatalyst for enhanced photocatalytic H 2
            [5]   YAO C K, YUAN A, WANG Z S, et al. Amphiphilic two-dimensional   evolution activity[J]. Journal of Colloid and Interface Science, 2021,
                 graphitic carbon nitride nanosheets for visible-light-driven phase-   581: 159-166.
                 boundary photocatalysis[J]. Journal of Materials Chemistry A, 2019,   [24]  MEDEIROS T V D, PORTO A O, BICALHO H A, et al. The effects
                 7(21): 13071-13079.                               of chemical and thermal exfoliation on the physico-chemical and
            [6]   ZHU M S, ZHAI C Y, SUN M,  et al. Ultrathin graphitic C 3N 4   optical properties of carbon  nitrides[J]. Journal of Materials
                 nanosheet as a promising visible-light-activated support for boosting   Chemistry C, 2021, 9(24): 7622-7631.
                 photoelectrocatalytic  methanol oxidation[J]. Applied Catalysis B:   [25]  WEN J Q, ZHANG S  Y, LIU Y G,  et al. Formic acid assisted
                 Environmental, 2017, 203: 108-115.                fabrication of  oxygen-doped rod-like carbon  nitride with improved
            [7]   YANG S B, GONG Y J, ZHANG J  S,  et al. Exfoliated graphitic   photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface
                 carbon nitride nanosheets as efficient catalysts for hydrogen   Science, 2022, 624: 338-347.
                 evolution under visible light[J]. Advanced Materials, 2013, 25(17):   [26]  MA L T, FAN H  Q, LI M M,  et al. A simple  melamine-assisted
                 2452-2456.                                        exfoliation of polymeric graphitic carbon nitrides for highly efficient
            [8]   MA  F K,  SUN C L,  SHAO Y  L,  et al. One-step exfoliation and   hydrogen production from water under visible light[J]. Journal of
                 fluorination of g-C 3N 4 nanosheets  with enhanced photocatalytic   Materials Chemistry A, 2015, 3(44): 22404-22412.
                 activities[J]. New Journal of Chemistry, 2017, 41(8): 3061-3067.   [27]  BAI J R, WANG Z  L,  ZHOU P,  et al. Rapid thermal surface
            [9]   YUAN Y J, SHEN Z K, WU S T, et al. Liquid exfoliation of g-C 3N 4   engineering of  g-C 3N 4 for efficient hydrogen evolution[J]. Applied
                 nanosheets to construct 2D-2D MoS 2/g-C 3N 4 photocatalyst  for   Surface Science, 2021, 539: 148308.
                 enhanced photocatalytic H 2 production activity[J]. Applied Catalysis   [28]  WANG L Y, HONG Y Z, LIU E L, et al. A bottom-up acidification
                 B: Environmental, 2019, 246: 120-128.             strategy engineered ultrathin g-C 3N 4  nanosheets towards boosting
            [10]  WANG K C, SONG S W, ZHANG Q F,  et al. Fabrication of   photocatalytic hydrogen evolution[J]. Carbon, 2020, 163: 234-243.
                 protonated g-C 3N 4 nanosheets as promising proton conductive   [29]  BABU P, MOHANTY S, NAIK B, et al. Synergistic effects effects of
                 materials[J]. Chemical Communications, 2019, 55(51): 7414-7417.   boron and sulfur co-doping into graphitic carbon nitride framework for
            [11]  YU T, HU Z M, WANG H M, et al. Enhanced visible-light-driven   enhanced photocatalytic activity in  visible light driven hydrogen
                 hydrogen evolution of ultrathin narrow-band-gap g-C 3N 4 nanosheets[J].   generation[J]. ACS Applied Energy Materials, 2018, 1(11): 5936-5947.
                 Journal of Materials Science, 2020, 55(5): 2118-2128.   [30]  MA L (马琳), ZHAO Y F (赵艳锋), ZHANG C L (张春龙), et al.
            [12]  ZHANG  J H, HOU Y  J, WANG  S J,  et al. A  facile method  for   Synthesis and photocatalytic performance of sulfate modified
                 scalable synthesis of ultrathin g-C 3N 4 nanosheets for efficient   graphitic carbon nitride[J]. Fine Chemicals (精细化工), 2019, 36(5):
                 hydrogen production[J]. Journal of Materials Chemistry  A, 2018,   898-904.
                 6(37): 18252-18257.                           [31]  WOOD P M. The potential  diagram for oxygen at pH 7[J].
            [13]  GAO S  Y, PAN L L, KONG W G,  et al. Engineering in-plane   Biochemical Journal, 1988, 253(1): 287-289.
                 π-conjugated structures in ultrathin g-C 3N 4 nanosheets for enhanced   [32]  CIBULKA R. Strong chemical reducing agents produced by light[J].
                 photocatalytic reduction  performance[J]. Applied Surface Science,   Nature, 2020, 580(7801): 31-32.
                 2023, 610: 155574.                            [33]  MARTHA S, MANSINGH S, PARIDA K M, et al. Exfoliated metal
            [14]  YU W W (于伟伟) . Construction of graphitic carbon nitrides and   free homojunction photocatalyst prepared by a biomediated route for
                 their photocatalytic performance for hydrogen production from water   enhanced hydrogen evolution and  Rhodamine B degradation[J].
                 splitting[D]. Dalian: Dalian University of Technology (大连理工大  Materials Chemistry Frontiers, 2017, 1(8): 1641-1653.
                 学), 2022.                                     [34]  LIU Y  Y,  ZHANG  Y, SHI L.  One-step synthesis of S-doped and
            [15] YANG  B  (杨斌). Structure control and photocatalytic performance   nitrogen-defects co-modified mesoporous g-C 3N 4 with  excellent
                 study of  ultrathin  graphitic carbon  nitride[D].  Shihezi: Shihezi   photocatalytic hydrogen production efficiency  and  degradation
                 University (石河子大学), 2022.                         ability[J]. Colloids and Surfaces A: Physicochemical and Engineering
            [16]  DUAN X Y (段贤扬), XU J H (徐继红), HE M Q (何梦奇), et al.   Aspects, 2022, 641: 128577.
                 Preparation of 2D graphite phase carbon nitride nanosheets and their   [35]  CHEN K, ZHANG X M, YANG X F, et al. Electronic structure of
                 photocatalytic performance[J]. Fine Chemicals (精细化工), 2021,   heterojunction MoO 2/g-C 3N 4 catalyst for oxidative desulfurization[J].
                 38(1): 83-90.                                     Applied Catalysis B: Environmental, 2018, 238: 263-273.
            [17]  JIA X  W, LI  Y F, LIU X C,  et al.  Highly crystalline sulfur and   [36]  WEN J, ZHANG S, LIU Y, et al. Formic acid assisted fabrication of
                 oxygen co-doped g-C 3N 4 nanosheets as an advanced photocatalyst   Oxygen-doped rod-like carbon nitride with improved photocatalytic
                 for efficient hydrogen generation[J]. Catalysis  Science &  Technology,   hydrogen evolution[J]. Journal of Colloid and  Interface Science,
                 2022, 12(16): 5136-5142.                          2022, 624: 338-347.
            [18]  GUO H, SHU Z, CHEN D H, et al. One-step synthesis of S-doped   [37]  SAKA C. Surface modification with oxygen doping  of g-C 3N 4
                 g-C 3N 4 nanosheets for improved visible-light photocatalytic hydrogen   nanoparticles by carbon vacancy for efficient dehydrogenation of
                 evolution[J]. Chemical Physics, 2020, 533: 110714.   sodium borohydride in methanol[J]. Fuel, 2022, 310: 122444.
            [19]  LIU J X (刘金香), CHEN Z G (陈子庚), XIE S B (谢水波), et al.   [38]  ZHU H, JIANG  R, XIAO  L, CHANG Y,  et al. Photocatalytic
                 Adsorption properties and mechanism of U( Ⅵ ) onto oxidized   decolorization and degradation of Congo Red on innovative crosslinked
                 graphitic carbon nitride nanomaterials[J]. Fine Chemicals (精细化  chitosan/nano-CdS  composite  catalyst under visible light irradiation[J].
                 工), 2019, 36(7): 1446-1452.                       Journal of Hazardous Materials, 2009, 169(1): 933-940.
            [20]  DU X R, ZOU G J, WANG Z H, et al. A scalable chemical route to   [39]  PATTNAIK S P,  BEVHERA A, MARTHA S,  et al. Synthesis,
                 soluble acidified graphitic carbon nitride: An ideal precursor for   photoelectrochemical properties and  solar light-induced photocatalytic
                 isolated ultrathin  g-C 3N 4 nanosheets[J]. Nanoscale, 2015, 7(19):   activity of bismuth ferrite nanoparticles[J]. Journal of Nanoparticle
                 8701-8706.                                        Research, 2018, 20(1): 10.
            [21]  BAI J R, WANG Z  L,  ZHOU P,  et al. Rapid thermal surface   [40]  JO W K, KUMAR S, ISAACS M A, et al. Cobalt promoted TiO 2/GO
                 engineering of  g-C 3N 4 for efficient hydrogen evolution[J]. Applied   for the photocatalytic degradation of oxytetracycline and Congo
                 Surface Science, 2021, 539: 148308.               Red[J]. Applied Catalysis B: Environmental, 2017, 201: 159-168.
            [22]  LI J H, SHEN B, HONG Z H, et al. A facile approach to synthesize   [41]  KUMAR A, SINGH S, KHANUJA M. A comparative photocatalytic
                 novel oxygen-doped g-C 3N 4 with superior visible-light photoreactivity[J].   study of pure and acid-etched template free graphitic  C 3N 4 on
                 Chemical Communications, 2012, 48(98): 12017-12019.   different dyes: An investigation on the influence  of surface
            [23]  HAN C C, SU P F,  TAN B,  et al. Defective ultra-thin two-   modifications[J]. Materials Chemistry and Physics, 2020, 243: 122402.
   80   81   82   83   84   85   86   87   88   89   90