Page 141 - 201811
P. 141

第 11 期                 周燕强,等: Pt/MoC 的制备及其在电解水析氢反应中的催化性能                                ·1927·


                                                               相态在碳化合成过程中通过形貌及体相上的拓扑变
                                                               换过程保持了样品整体上的片层结构,暴露出更多
                                                               的活性位点,相比于 β-Mo 2 C,α-MoC 表现出更大的
                                                               比表面积及更好的 HER 催化活性,更加有利于电解
                                                               水析氢反应的进行。
                                                                  (2)XPS 结果显示,随着 Pt 负载量的增加,Pt

                                                               与碳化钼载体的相互作用也随之增强,1.6Pt/Mo x C y
                                                               的高 HER 催 化活性及 稳定性的 原因归结 于
                                                               α-MoC 1–x 的高表面积及 Pt 与 MoC 的强相互作用。
                                                               1.6Pt/Mo x C y 在酸性电解质中过电势 η onset =108 mV,
                                                               塔菲尔斜率 b=74 mV/dec,阻抗为 18.77 Ω。
                                                                  (3)对比价格昂贵的商业 20%Pt/C(20%为 Pt
                                                               的质量分数)催化剂,自制的催化剂可以大幅减少 Pt
                                                               金属的用量,成本大约只有商业催化剂的 10%。

                                                               参考文献:
                                                               [1]   Steele B C, Heinzel A. Materials for fuel-cell technologies[J]. Nature,
                                                                   2001, 414(6861): 345-352.
                                                               [2]   Kreuter W, Hofmannz H. The important energy transformer in a
                                                                   world of sustainable  energy[J].  International  Journal of Hydrogen
                                                                   Energy, 1996, 23(8): 661-666.
                                                               [3]   Debe M K. Electrocatalyst approaches and challenges for automotive
                                                                   fuel cells[J]. Nature, 2012, 486(7401): 43-51.
                                                               [4]   Walter M G, Warren E L, McKone J R, et al. Solar water splitting
                                                                   cells[J]. Chemical Reviews, 2010, 110(11): 6446-6473.
                                                               [5]   Bartak D E,  Kazee B, Shimazu K,  et al. Electrodeposition and
                                                                   characterization of platinum  microparticles in poly(4-vinylpyridine)
                                                                   film electrodes[J]. Analytical Chemistry, 1986, 58(13):2756-2761.
                                                               [6]   Millet P, Andolfatto F, Durand R. Design and performance of a solid
                                                                   polymer  electrolyte water electrolyzer [J]. International Journal of
                                                                   Hydrogen Energy, 1996, 21(2): 87-93.
                                                               [7]   Levy R B, Boudan M. Platinum-like behavior of tungsten carbide in
                                                                   surface catalysis[J]. Science,1973, 181(4099): 547-549.
                                                               [8]   de Novion C H, Landesman J P. Order and disorder in  transition
                                                                   metal carbides and nitrides: experimental and theoretical aspects[J].

                                                                   Pure and Applied Chemistry, 1985, 57(10): 1391-1402.
            a—线性扫描伏安曲线;b—塔菲尔曲线;c—电化学阻抗谱;                       [9]   Vrubel H, Hu Xile. Molybdenum boride and carbide catalyze
                                                                   hydrogen evolution  in  both acidic and  basic solutions[J].  Angewandte
            d—循环伏安曲线                                               Chemie-International Edition, 2012, 51(51): 12703-12706.
            图 6   β-Mo 2 C 及不同 Pt 负载量的 Pt/Mo x C y 催化剂的电化      [10]  Ma Y F, Guan G Q, Hao X G, et al. Molybdenum carbide as
                                                                   alternative catalyst for hydrogen production-A review [J]. Renewable
                  学测试结果                                            and Sustainable Energy Reviews, 2017, 75: 1101-1129.
            Fig. 6    Electrochemical test results of β-Mo 2 C and Pt/MoC   [11]  Bouchy C, Schmidt I, Anderson  J, et al. Metastable fcc  α-MoC 1-x
                   Pt/Mo x C y  with different Pt loadings         supported on HZSM5: preparation and catalytic performance for the
                                                                   non-oxidativeconversion  of methane to aromatic compounds[J].
                                                                   Journal of Molecular Catalysis A Chemical , 2000, 163(1): 283-296.
            降低幅度并不大,催化剂的稳定性依然可以得到保                             [12]  Ranhotra G, Bell A, Reimer J. Catalysis over molybdenum carbides
            证,综合考虑,1.6Pt/Mo xC y 具有良好的催化性能。                        and nitrides:  Ⅱ . Studies of CO hydrogenation and C 2H 6
                                                                   hydrogenolysis [J]. Journal of Catalysis, 1987, 108(1): 40-49.
                                                               [13]  Ma Y F, Guan G Q, Shi C, et al. Low-temperature steam reforming
            3   结论                                                 of methanol to produce hydrogen over various metal-doped
                                                                   molybdenum carbide catalysts[J]. International Journal of Hydrogen
                                                                   Energy, 2014, 39(1): 258-266.
                 通过简单负载方法制备了高活性、低金属负载                          [14]  Jung K T, Kim W B, Rhee C  H,  et al. Effects of  transition metal
                                                                   addition on the solidstate transformation of molybdenum trioxide to
            量的 Pt/MoC 催化剂。实验结果显示,通过 Pt 与 MoC                       molybdenum carbides[J]. Chemistry of Materials, 2004, 16(2): 307-
            之间的相互作用能够明显提高 Pt 的负载量,进一步                              314.
                                                               [15]  Shi C, Zhang A J, Li X S,  et al. Ni-modified Mo 2C catalysts for
            可影响催化剂的催化活性。本实验为降低商用 Pt/C                              methane dry reforming[J]. Applied Catalysis A: General, 2012,
                                                                   431(29): 164-170.
            催化剂中贵金属 Pt 的使用提供了理论基础,为进一                          [16]  Vilekar S A, Fishtik I, Datta R. Kinetics of the hydrogen electrode
            步推进电解水大规模制氢提供了实验基础。具体结                                 reaction[J]. Journal of the Electrochemical Society, 2010, 157(7):
                                                                   1040-1050.
            论如下:                                               [17]  Lin H, Liu N, Shi  Z,  et al. Cobalt-doping in molybdenum-carbide
                                                                   nanowires toward efficient electrocatalytic hydrogen evolution[J].
                (1)通过在 700 ℃、CH 4 /H 2 (CH 4 体积分数为                 Advanced Functional Materials, 2016, 26(31): 5590-5598.
            20%)气氛下的程序升温反应原位制得 Pt/Mo x C y 催                   [18]  Oki S, Mezalki R. Identification of rate-controlling steps for the
                                                                   water-gas shift reaction over an iron oxide catalyst[J]. The Journal of
            化剂,并且样品均得到 α-MoC 1–x 相态。其中,α-MoC                       Physical Chemistry, 1973, 77(4): 447-452.
   136   137   138   139   140   141   142   143   144   145   146