Page 109 - 201812
P. 109
第 12 期 范娜娜,等: 2-叠氮肉桂酸苄酯催化加氢制备-氨基酸 ·2077·
表 3 2-叠氮肉桂酸苄酯的催化加氢反应 3 结论
Table 3 Catalytic hydrogenation of the benzyl -
azidocinnamates 本文以叠氮乙酸乙酯与芳香醛为原料,依次通
序号 反应底物 产物 反应时间/h 产率/% 过醛酯缩合反应、皂化反应以及苄酯化反应,合成
1 7a (Ar = Ph) 1a 3 84 了 10 个 2-叠氮肉桂酸苄酯类化合物。随后对其进行
2 7b (Ar = 3-MeO-Ph) 1b 4 83
3 7c (Ar = 4-MeO-Ph) 1c 4 78 Pd/C 催化加氢,以 76%~89%的收率合成了一系列 -
氨基酸。该转化的优势在于反应后处理简单,反应高
4 7d (Ar = 3,4-MeO-Ph) 1d 4 76
5 7e (Ar = 4-F-Ph) 1e 8 83 效,为 -氨基酸的合成提供了一种新的有效策略。
6 7f (Ar = 4-Cl-Ph) 1a 8 80
7 7g (Ar = 4-Br-Ph) 1a 8 79 参考文献:
8 7h (Ar = 4-Me-Ph) 1h 3 84 [1] Blaser H U. The chiral pool as a source of enantloselective catalysts
and auxiliaries[J]. Chemical Reviews, 1992, 92(5): 935-952.
9 7i (Ar = 4-i-Pr-Ph) 1i 3 82 [2] Tang Z, Yang Z H, Chen X H, et al. A highly efficient organocatalyst
10 7j (Ar = 2-Naphenyl) 1j 3 89 for direct aldol reactions of ketones with aldedydes[J]. Journal of the
American Chemical Society, 2005, 127(25): 9285-9289.
[3] Zheng Z L, Peikins B L, Ni B K. Diarylprolinol silyl ether salts as
2-叠氮肉桂酸苄酯在进行加氢反应时,会涉及 new, efficient, water-soluble, and recyclable organocatalysts for the
asymmetric michael addition on water[J]. Journal of the American
到叠氮基团的还原、碳碳双键的加氢以及苄基酯的 Chemical Society, 2010, 132(1): 50-51.
脱除,三个位点的反应活性存有差异。在多个底物 [4] Wang J, Liu X, Feng X. Asymmetric strecker reactions[J]. Chemical
Reviews, 2011, 111(11): 6947-6983.
加氢实验过程中,曾选择不同反应时间点,使用核 [5] Shibasaki M, Kanai M, Mita T. The catalytic asymmetric strecker
reaction[J]. Organic Reactions, 2008, 70(1): 1019-1024.
磁来监控反应体系。结果显示,反应体系从一开始 [6] Groger H. Catalytic enantioselective strecker reactions and analogous
syntheses[J]. Chemical Reviews, 2003, 103(8): 2795-2828.
就十分复杂,无法识别具体是哪一个位点会优先加 [7] Tang W J, Zhang X M. New chiral phosphorus ligands for
氢。但幸运的是,随着时间推移,反应体系会越来 enantioselective hydrogenation[J]. Chemical Reviews, 2003, 103(8):
3029-3070.
越干净,最后得到非常单一的 -氨基酸产物。分析 [8] Knowles W S. Asymmetric hydrogenation[J]. Accounts of Chemical
Research, 1983, 16(3): 106-112.
该转化反应历程复杂的可能原因如下:(1)在底物的 [9] Ma D D, Gu P M, Li R. Asymmetric hydrogenation of
1-silyl-1-substituted alkenes for preparation of optically active
加氢反应中,由于 3 个反应位点都会参与,则可能会 silanes[J]. Tetrahedron Letters, 2016, 57(50): 5666-5668.
[10] Ji Y, Xue P, Ma D D, et al. Asymmetric transfer hydrogenation of
生成单位点、双位点以及三位点加氢的产物;(2)在 α-azido acrylates[J]. Tetrahedron Letters, 2015, 56(1): 192-194.
Pd/C 加氢条件下,3 个反应位点的活性差异可能无法 [11] Stokes B J, Dong H J, Leslie B E, et al. Intramolecular C—H
amination reactions: exploitation of the Rh 2( Ⅱ )-catalyzed
有效区分,因此单位点反应产物以及双位点反应产 decomposition of azidoacrylates[J]. Journal of the American
Chemical Society, 2007, 129(24): 7500-7501.
物并不单一,导致体系比较复杂;(3)如果叠氮基 [12] O’Brien A G, Levesque F, Seeberger P H. Continuous flow
thermolysis of azidoacrylates for the synthesis of heterocycles and
团优先于碳碳双键的还原,初级产物烯胺酯或烯胺 pharmaceutical intermediates[J]. Chemical Communications, 2011,
羧酸可能异构为亚胺酯或亚胺羧酸,甚至可能被水 47(9): 2688-2690.
[13] Wang L, Xie Y B, Huang N Y, et al. Catalytic aza-wittig reaction of
解为酮酯或酮酸,这更增加了反应体系的混乱度。 acid anhydride for the synthesis of 4H-benzo[d][1, 3]oxazin-4-ones
and 4-benzylidene-2-aryloxazol-5(4H)-ones[J]. ACS Catalysis, 2016,
2.3 底物适用范围考察 6(6): 4010-4016.
[14] Liu S X, Yang Y H, Zhen X L, et al. Enhanced reduction of C–N
为了考察芳环上电子效应对加氢反应的影响, multiple bonds using sodium borohydride and an amorphous nickel
catalyst[J]. Organic & Biomolecular Chemistry, 2012, 10(3): 663- 670.
在底物结构中引入一系列富电子与缺电子因素,所 [15] Pirrung M C, Krishnamurthy N. Preparation of (R)-phenylalanine
有底物的加氢反应都可以有效发生。但是,在对底 analogues by enantbeelective destruction using l-amino acid
oxidase[J]. The Journal of Organic Chemistry, 1993, 58(4): 957-958.
物 7f 与 7g 进行加氢反应时,观察到了芳环上卤素 [16] Arava V R, Amasa S R, Bhatthula B K G, et al. Asymmetric synthesis
of unnatural amino acids and tamsulosin chiral intermediate[J].
的脱除,这涉及到第 4 个反应位点的加氢。对于所 Synthetic Communications, 2013, 43(21): 2892-2897.
有底物,只要反应时间足够,最终都会得到核磁谱 [17] Torrado A, Imperiali B. New synthetic amino acids for the design and
synthesis of peptide-based metal ion sensors[J]. The Journal of
图显示单一的 α-氨基酸产物,整个转化的收率为 Organic Chemistry, 1996, 61(25): 8940-8948.
[18] Parmeggiani F, Ahmed S T, Thompson M P, et al. Single-biocatalyst
76%~89%。反应后处理非常简单,只涉及到简单的 synthesis of enantiopure d-arylalanines exploiting an engineered
α-amino acid dehydrogenase[J]. Advanced Synthesis & Catalysis,
过滤洗涤。作者认为,通过多次充分洗涤 Pd/C,该 2016, 358(20): 3298-3306.
转化的收率有望进一步提高。在对底物 7f 以及 7g [19] Mita T, Sugawara M, Sato Y. One-pot synthesis of α-amino acids
through carboxylation of ammonium ylides with CO 2 followed by alkyl
进行加氢反应时,不仅发生了叠氮还原、双键加氢 migration[J]. The Journal of Organic Chemistry, 2016, 81(12): 5236-5243.
[20] Szymanski W, Wu B, Weiner B, et al. Phenylalanine aminomutase-
以及苄基脱除反应,还发生了芳环上脱氯脱溴的反 catalyzed addition of ammonia to substituted cinnamic acids: a route
应,其加氢产物为 1a。其中,底物 7f 加氢生成 1a to enantiopure γ- and β-amino acids[J]. The Journal of Organic
Chemistry, 2009, 74(23): 9152-9157.
的反应时间为 8 h,收率为 80%;底物 7g 加氢生成 [21] Caligiuri A, D’Arrigo P, Rosini E, et al. Enzymatic conversion of
unnatural amino acids by yeast d-amino acid oxidase [J]. Advanced
1a 的反应时间为 8 h,收率为 79%。因此,该策略 Synthesis & Catalysis, 2006, 348(15): 2183-2190.
[22] Boaz N W, Large S E, Ponasik J A, et al. The preparation of single
在用于制备芳环上连有氯以及溴取代基的氨基酸时 enantiomer 2-naphthylalanine derivatives using rhodium-methyl
boPhoz-catalyzed asymmetric hydrogenation [J]. Organic Process
存在一定的局限性。 Research & Development, 2005, 9(4): 472-478.