Page 90 - 201809
P. 90
·1516· 精细化工 FINE CHEMICALS 第 35 卷
图 8 结果显示,未煅烧的材料在 5 h 之后 E. coli [8] Yemmireddy V K, Hung Y C. Photocatalytic TiO 2 coating of plastic
存活率为 58.37%。而经过 200~600 ℃煅烧后制得材 cutting board to prevent microbial cross-contamination[J]. Food
Control, 2017, 77: 88-95.
料,经可见光催化反应 5 h,E. coli 的存活率分别为 [9] Wang Wenguang (王文广). Preparation and photocatalytic activity
55.48%、53.55%、47.78%、0.304%、39.82%和 28.21%。 of Titanium dioxide-based composite photocatalysts[D]. Wuhan
University of Technology(武汉理工大学), 2012.
并随着光照时间的增长,发现材料产生的•OH 越多,
[10] Yang Pengfei(阳鹏飞), Sun Xunkai(孙允凯), Ke Guojun(柯国军).
其抗菌性能就越好,例如:在 450 ℃煅烧下的 Preparation and photocatalytic activity of Ag/TiO 2/AC photo-catalyst
Au/TiO 2 复合材料的抗菌性能最好,经可见光下催化 with double function[J]. Fine Chemicals(精细化工), 2016, 33(12):
1393-1397.
反应 5 h,E. coli 的存活率为 0.304%,与 2.6 小节羟 [11] Kim B, Kim D, Cho D, et al. Bactericidal effect of TiO 2 photocatalyst
基自由基的检测相互印证。这一结果更验证了以前 on selected food-borne pathogenic bacteria[J]. Chemosphere, 2003,
的研究 [38] :当锐钛矿相与金红石相为混相,且锐钛 52(1): 277-281.
[12] Maneerat C, Hayata Y. Antifungal activity of TiO 2 photocatalysis
矿相为主,而金红石相以一定合适的比例存在时, against Penicillium expansum in vitro and in fruit tests[J]. International
催化效果较好。由于两者禁带宽度不一致,可以相 Journal of Food Microbiology, 2006, 107(2): 99-103.
[13] Matsunaga T, Tomoda R, Nakajima T, et al. Continuous-sterilization
互匹配,从而增加两者电子和空穴的分离效率,使
system that uses photosemiconductor powders[J]. Appl Environ
合成的双相材料具有较好的催化效果。 Microbiol, 1988, 54(6): 1330-1333.
[14] Gan T, Sun J, Meng W, et al. Electrochemical sensor based on
3 结论 graphene and mesoporous TiO 2 for the simultaneous determination
of trace colourants in food[J]. Food Chemistry, 2013, 141(4):
3731-3737.
本研究制备了一系列的粒径 20~50 nm的 Au/TiO 2
[15] Jeffery B, Peppler M, Lima R S, et al. Bactericidal effects of
纳米复合材料,所合成的双相(锐钛矿相和金红石 HVOF-sprayed nanostructured TiO 2 on Pseudomonas aeruginosa[J].
相)复合材料在金含量较低(摩尔分数 0.3%)的情 Journal of Thermal Spray Technology, 2010, 19(1/2): 344-349.
[16] Kubacka A, Ferrer M, Cerrada M L, et al. Boosting TiO 2-anatase
况下,其抗菌性能(E. coli 存活率为 0.3%)优于之 antimicrobial activity: Polymer-oxide thin films[J]. Applied Catalysis
前研究的金摩尔分数为 1%的单相 TiO 2 复合材料(E. B Environmental, 2009, 89(3/4): 441-447.
[17] Makowski A, Wardas W. Photocatalytic degradation of toxins
coli 存活率 32.0%)。相对于单相二氧化钛与金复合
secreted to water by cyanobacteria and unicellular algae and
材料,双相二氧化钛与金复合材料具有良好的 SPR photocatalytic degradation of the cells of elected microorganisms[J].
效应,并在可见光区域有较好的光吸收,催化效率 Curr Top Biophys, 2001, 25(1): 19-25.
[18] Liu H L, Yang C K. Photocatalytic inactivation of Escherichia coli
提高,降低原核病原菌大肠杆菌的存活率,表现出
and Lactobacillus helveticus by ZnO and TiO 2 activated with
优异的抗菌性能,减少成本更具有实际使用价值。 ultraviolet light[J]. Process Biochemistry, 2003, 39(4): 475-481.
因此,所合成的 Au/TiO 2 纳米复合材料有望在食源 [19] Cheng Y W, Chan R C, Wong P K. Disinfection of Legionella
pneumophila by photocatalytic oxidation[J]. Water Research, 2007,
性病原菌防治中得到应用。 41(4): 842-852.
[20] Guimaraes J R, Barretto A S. Photocatalytic inactivation of
参考文献: Clostridium perfringens and coliphages in water[J]. Brazilian Journal
[1] Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical of Chemical Engineering, 2003, 20(4): 403-411.
sterilization of microbial cells by semiconductor powders[J]. Fems [21] Rahmani A, Samadi M, Enayati M A. Investigation of photocatalytic
Microbiology Letters, 1985, 29(1/2): 211-214. degradation of phenol by UV/TiO 2 process in aquatic solutions[J].
[2] Zhang X D, Gang X, Wang Y Q, et al. Preparation of chitosan-TiO 2 Journal of Research in Health Sciences, 2008, 8(2): 55-60.
composite film with efficient antimicrobial activities under visible [22] Bodaghi H, Mostofi Y, Oromiehie A, et al. Evaluation of the
light for food packaging applications[J]. Carbohydrate Polymers, photocatalytic antimicrobial effects of a TiO 2 nanocomposite food
2017, 169: 101-107. packaging film by in vitro and in vivo tests[J]. LWT-Food Science
[3] Cho M, Chung H, Choi W, et al. Linear correlation between and Technology, 2013, 50(2): 702-706.
inactivation of E. coli and •OH radical concentration in TiO 2 [23] Xiong Z G, Wu H, Zhang L H, et al. Synthesis of TiO 2 with
photocatalytic disinfection[J]. Water Research, 2004, 38(4): 1069-1077. controllable ratio of anatase to rutile[J]. Journal of Materials
[4] Kuhn K P, Chaberny I F, Massholder K, et al. Disinfection of Chemistry A, 2014, 2(24): 9291-9297.
surfaces by photocatalytic oxidation with titanium dioxide and UVA [24] Liu Z Y, Zhang X T, Nishimoto S, et al. Anatase TiO 2 nanoparticles
light[J]. Chemosphere, 2003, 53(1): 71-77. on rutile TiO 2 nanorods: A heterogeneous nanostructure via
[5] Huang Z, Maness P C, Blake D M, et al. Bactericidal mode of layer-by-layer assembly[J]. Langmuir the Acs Journal of Surfaces &
titanium dioxide photocatalysis[J]. Journal of Photochemistry & Colloids, 2007, 23(22): 10916-10919.
3+
Photobiology A Chemistry, 2000, 130(2/3): 163-170. [25] Zhou Y, Chen C H, Wang N N, et al. Stable Ti self-doped anatase-
[6] Chawengkijwanich C, Hayata Y. Development of TiO 2 powder- rutile mixed TiO 2 with enhanced visible light utilization and
coated food packaging film and its ability to inactivate Escherichia durability[J]. Journal of Physical Chemistry C, 2016, 120(11):
coli in vitro and in actual tests[J]. International Journal of Food 6116-6124.
Microbiology, 2008, 123(3): 288-292. [26] Zhang J T, Suo X Y, Zhang J, et al. One-pot synthesis of Au/TiO 2
[7] Verdier T, Coutand M, Bertron A, et al. Antibacterial activity of heteronanostructure composites with SPR effect and its antibacterial
TiO 2 photocatalyst alone or in coatings on E. coli the influence of activity[J]. Materials Letters, 2016, 162: 235-237.
methodological aspects[J]. Coatings, 2014, 4(3): 670-686. [27] Ding D, Liu K, He S, et al. Ligand-exchange assisted formation of