Page 91 - 201809
P. 91

第 9 期                            张静涛,等: TiO 2 纳米复合材料抗菌性能                                ·1517·


                 Au/TiO 2 Schottky  contact for  visible-light photocatalysis[J]. Nano   titania containing gold nanoparticles for the generation of Hydrogen
                 Letters, 2014, 14(11): 6731-6736.                 or Oxygen from water[J]. Journal of the American Chemical Society,
            [28]  Thomann I, Pinaud B A, Chen Z, et al. Plasmon enhanced Solar-to-   2010, 133(3): 595-602.
                 Fuel energy conversion[J]. Nano Letters, 2011, 11(8): 3440-3446.   [35]  Warren S C, Thimsen E. Plasmonic solar water splitting[J]. Energy &
            [29]  Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures   Environmental Science, 2012, 5(1): 5133-5146.
                 for efficient conversion  of solar to  chemical  energy[J]. Nature   [36]  Kale M J, Avanesian T, Christopher P. Direct photocatalysis by
                 Materials, 2011, 10(12): 911-921.                 plasmonic nanostructures[J]. Acs Catalysis, 2014, 4(1): 116-128.
            [30]  Ingram D B, Linic S. Water splitting on composite plasmonic-metal/   [37]  Qi X, Ouyang L L. Photocatalytic activity and hydroxyl radical
                 semiconductor  photoelectrodes: evidence for selective  plasmon-   formation of carbon-doped TiO 2 nanocrystalline: Effect of calcination
                 induced formation of charge carriers near the semiconductor   temperature[J]. Chemical Engineering Journal, 2009, 148(2/3): 248-253.
                 surface[J]. Journal of the American Chemical Society, 2011, 133(14):   [38]  De Mendonca V R, Avansi Jr W, Arenal R, et al. A building blocks
                 5202-5205.                                        strategy for preparing  photocatalytically active anatase TiO 2/rutile
            [31]  OuYang qin (欧阳琴), Jiang Zhuo (江卓), Zan Ling (昝菱).   SnO 2 heterostructures by hydrothermal annealing[J]. Journal of
                 Morphology and photocatalytic activity of Ag nanoparticle loaded   Colloid & Interface Science, 2017, 505: 454-459.
                 TiO 2 single facet[J]. Fine Chemicals (精细化工), 2016, 33(9):   [39]  Chen Na (陈娜),  Cheng Yongqing (程永清). Recent progress of
                 984-990.                                          nano-TiO 2 photocatalyst in antibacterial application[J]. Chemical
            [32]  Bian Z, Tachikawa T, Zhang P, et al. Au/TiO 2 superstructure-based   Industry and Engineering (化学工业与工程), 2005, 22(6): 445-449.
                 plasmonic photocatalysts exhibiting efficient charge separation and   [40]  Zhang Y Q, Li D,  Qin L G, et al. Preparation of Au-loaded TiO 2,
                 unprecedented activity[J]. Journal of the American Chemical Society,   pecan-kernel-like and its enhanced toluene sensing performance[J].
                 2014, 136(1): 458-465.                            Sensors & Actuators B Chemical , 2017, 255(2018): 2240-2247.
            [33]  Jiang R, Li B,  Fang C,  et al. Metal/semiconductor  hybrid   [41]  Raja P, Bozzi A, Mansilla H, et al. Evidence for superoxide-radical
                 nanostructures  for plasmon-enhanced applications[J]. Advanced   anion, singlet oxygen and OH-radical intervention during the
                 Materials, 2014, 26(31): 5274-5309.               degradation of the lignin model compound (3-methoxy-4-
            [34]  Silva C  G, Juarez R, Marino T,  et al. Influence of excitation   hydroxyphenylmethylcarbinol)[J]. Journal of  Photochemistry &
                 wavelength (UV or Visible Light) on the photocatalytic activity of   Photobiology A Chemistry, 2005, 169(3): 271-278.


            (上接第 1510 页)                                           extender[J]. Polymer Chemistry, 2013, 4(5): 1491-1501.
            [11]  Wu K, Kandola B K, Kandare E,  et al. Flame retardant effect of   [19]  Ni Y, Zheng S. Epoxy resin containing polyphenylsilsesquioxane:
                 polyhedral oligomeric silsesquioxane and triglycidyl isocyanurate on   Preparation, morphology, and thermomechanical properties[J]. Journal
                 glass fibre-reinforced epoxy composites[J]. Polymer  Composites,   of Polymer Science, Part A: Polymer Chemistry, 2006, 44(3): 1093-1105.
                 2011, 32(3): 378-389.                         [20]  Fina A, Tabuani  D, Carniato F,  et al. Polyhedral  oligomeric
            [12]  Musto P, Abbate M, Pannico M, et al. Improving the photo-oxidative   silsesquioxanes (POSS) thermal degradation[J]. Thermochimica Acta,
                 stability of epoxy resins by use of functional POSS additives: A   2006, 440(1): 36-42.
                 spectroscopic, mechanical and morphological study[J]. Polymer,   [21]  Oaten M, Choudhury N R. Silsesquioxane-urethane hybrid for thin
                 2012, 53(22): 5016-5036.                          film applications[J]. Macromolecules, 2005, 38(15): 6392-6401.
            [13]  Madbouly S A, Otaigbe J U, NandaAK, et al. Rheological behavior   [22]  Huang J, Jiang P P, Wen Y, et al. Soy-castor oil based polyurethanes
                 of POSS/polyurethaneurea nanocomposite films prepared by   with octaphenylsilsesquioxanetetraol double-decker silsesquioxane in
                 homogeneous solution polymerization in aqueous dispersions[J].   the main chains[J]. RSC Advances, 2016, 6(73): 69521-69529.
                 Macromolecules, 2007, 40(14): 4982-4991.      [23]  Lu Y S, Xia Y, Larock R C. Surfactant-free core-shell hybrid latexes
            [14]  Wang X, Hu Y, Song L, et al. UV-curable waterborne polyurethane   from soybean oil-based Waterborne polyurethanes and poly (styrene-
                 acrylate  modified with octavinyl POSS for weatherable coating   butyl acrylate)[J]. Progress in Organic Coating, 2011, 71(4): 336-342.
                 applications[J]. Journal of Polymer Research, 2011, 18(4): 721-729.   [24]  Band G S, Ghosh S B, Sain M. Synthesis of soy-polyol by two step
            [15]  Turri S, Levi M. Structure, dynamic properties, and surface behavior   continuous route and development of soy-based polyurethane foam
                 of nanostructured ionomeric polyurethanes from reactive polyhedral   [J]. Journal of Polymers and the Environment, 2010, 18(3): 437-442.
                 oligomeric silsesquioxanes[J]. Macromolecules, 2005, 38(13): 5569-   [25]  Lewicki J P, Pielichowski K, Croix P T, et al. Thermal degradation
                 5574.                                             studies of  polyurethane/POSS nanohybrid elastomers[J]. Polymer
            [16]  Hao T, Liu X, Hu  G H,  et al. Preparation and characterization  of   Degradation and Stability, 2010, 95(6): 1099-1105.
                 polyurethane/POSS hybrid aqueous dispersions from  mono-amino   [26]  Lee Y J, Kuo S W, Huang C F, et al. Synthesis and characterization of
                 substituted POSS[J]. Polymer Bulletin, 2017, 74(2): 517-529.   polybenzoxazine networks nanocomposites containing multifunctional
            [17]  Liu H, Zheng S. Polyurethane networks nanoreinforced by polyhedral   polyhedral oligomeric silsesquioxane (POSS)[J]. Polymer, 2006,
                 oligomeric silsesquioxane[J]. Macromolecular Rapid Communications,   47(12): 4378-4386.
                 2005, 26(3): 196-200.                         [27] Lu Chengyu (卢成渝), Tian Chunrong (田春蓉), Wang Jianhua (王
            [18]  Wei K, Wang L, Zheng S. Organic-inorganic polyurethanes with   建华). Preparation and characterization of POSS/PUE nanocomposites
                 3,13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain   [J]. Materials Review (材料导报), 2010, 24(10): 111-114.
   86   87   88   89   90   91   92   93   94   95   96